Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In synesthesia activation in one sensory domain, such as smell or sound, triggers an involuntary and unusual secondary sensory or cognitive experience. In the present study, we ask whether the added sensory experience of synesthesia can aid statistical learning-the ability to track environmental regularities in order to segment continuous information. To investigate this, we measured statistical learning outcomes, using an aurally presented artificial language, in two groups of synesthetes alongside controls and simulated the multimodal experience of synesthesia in non-synesthetes. One group of synesthetes exclusively had grapheme-color (GC) synesthesia, in which the experience of color is automatically triggered by exposure to written or spoken graphemes. The other group had both grapheme-color and sound-color (SC+) synesthesia, in which the experience of color is also triggered by the waveform properties of a voice, such as pitch, timbre, and/or musical chords. Unlike GC-only synesthetes, the experience of color in the SC+ group is not perfectly consistent with the statistics that signal word boundaries. We showed that GC-only synesthetes outperformed both non-synesthetes and SC+ synesthetes, likely because the visual concurrents for GC-only synesthetes are highly consistent with the artificial language. We further observed that our simulations of GC synesthesia, but not SC+ synesthesia produced superior statistical learning, showing that synesthesia likely boosts learning outcomes by providing a consistent secondary cue. Findings are discussed with regard to how multimodal experience can improve learning, with the present data indicating that this boost is more likely to occur through explicit, as opposed to implicit, learning systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cognition.2019.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!