Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Erianin is the major bibenzyl compound found in Dendrobium chrysotoxum Lindl. The current study was designed to investigate the protective effects of erianin on high glucose-induced injury in cultured renal tubular epithelial cells (NRK-52E cells) and determine the possible mechanisms for its effects. NRK-52E cells were pretreated with erianin (5, 10, 25 or 50 nmol/L) for 1 h followed by further exposure to high glucose (30 mmol/L, HG) for 48 h. Erianin concentration dependently enhanced cell viability followed by HG treatment in NRK-52E cells. HG induced reactive oxygen species (ROS) generation, malondialdehyde production, and glutathione deficiency were recovered in NRK-52E cells pretreated with erianin. HG triggered cell apoptosis via the loss of mitochondrial membrane potential, depletion of adenosine triphosphate, upregulation of caspases 9 and 3, enhancement of cytochrome c release, and subsequent interruption of the Bax/Bcl-2 balance. These detrimental effects were ameliorated by erianin. HG also induced activation of p53, JNK, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in NRK-52E cells, which were blocked by erianin. The results suggest that treatment NRK-52E cells with erianin halts HG-induced renal dysfunction through the suppression of the ROS/MAPK/NF-κB signaling pathways. Our findings provide novel therapeutic targets for diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2019.02.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!