Investigations with the fluorinated spermidine analogues show clearly that these compounds have significant potential for studying the metabolism and functions of the polyamines. However, the biochemical and biological properties of these analogues are dissimilar. This is due to the influence of the fluorine substituent(s) on the basicity of the amine function proximal to the fluoromethylene group, this effect being amplified by geminal disubstitution. The monofluorinated spermidine analogues compare well with the natural amine in their ability to regulate the expression of the decarboxylase enzymes, to be substrates of spermine synthase and to support growth of polyamine-deficient cells. It is also likely that 6-monofluorospermine, formed biochemically in situ, shares with spermine similar functions. These findings raise the possibility of using these spermidine analogues to study the metabolism and pharmacology of polyamines in vivo but also to provide more insight into the regulatory role of spermidine in ODC and SAM-DC expression. Another potential application may be the use of these analogues as probes in tumor imaging and therapy control. This indication has been inferred by studies in tumor-bearing animals, using 19F-NMR spectroscopy determination of tissue fluorospermidine and fluorospermine, formed biochemically from the precursors 2-fluoro or 2,2-difluoroputrescine, and which demonstrate preferential accumulation in tumor versus normal tissue. Finally, these monofluorinated spermidine analogues may exert beneficial effects in pathological states associated with polyamine deficiency. These diseases remain however to be identified. Among the difluorinated spermidine analogues, 7,7-difluorospermidine possesses the most interesting properties. This spermidine analogue still possesses ODC and SAM-DC repressing activities although at much higher concentration than spermidine. More importantly it is a potent inhibitor of spermine synthesis both in cultured cells and in vivo due to its efficient competition with spermidine in the spermine synthase reaction. This compound not only depletes tumor cell of its spermine content but, in addition, appears to exert by itself and/or via 6,6-difluorospermine, the product of its metabolism, polyamine antagonist effects. Combined with MAP but also with DFMO, two potent irreversible inhibitors of ODC which block the synthesis of the natural endogenous polyamines, 7,7-difluorospermidine causes an immediate decrease of viability in cultured HTC cells and promotes tumor regression and stabilization in hepatoma-bearing rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4684-5637-0_61 | DOI Listing |
iScience
January 2025
Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
Pleural mesothelioma is a highly chemotherapy-resistant cancer. Approximately 50% of mesotheliomas do not express argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme in arginine biosynthesis, making arginine depletion with pegylated arginine deiminase (ADI-PEG20) an attractive therapeutic strategy. We investigated whether combinatory treatment composed of ADI-PEG20 and polyamine inhibitors constitutes a promising novel therapeutic strategy to overcome ADI-PEG20 resistance in mesothelioma patients.
View Article and Find Full Text PDFGut Microbes
December 2024
Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Enteropathogenic (EPEC) is a bacterium that causes attaching/effacing (A/E) lesions and serious diarrheal disease, a major health issue in developing countries. EPEC pathogenicity results from the effect of virulence factors and dysregulation of host responses. Polyamines, including spermidine, play a major role in intestinal homeostasis.
View Article and Find Full Text PDFAnal Biochem
February 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computer Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada. Electronic address:
Molecules
September 2024
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary.
Oligoamines in cellular metabolism carry extremely diverse biological functions (i.e., regulating Ca-influx, neuronal nitric oxide synthase, membrane potential, Na, K-ATPase activity in synaptosomes, etc.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!