AI Article Synopsis

  • Many biomaterials can adjust to changes in their biological environment, impacting their function and how they deliver substances.
  • The adaptation process starts on a local structural level and moves up to larger molecular scales, highlighting the importance of understanding these fast structural changes for designing effective biomaterials.
  • In this study, researchers used time-resolved X-ray scattering to investigate the structural dynamics of poly-l-glutamic acid when it reacts to a sudden change in pH, revealing important changes in peptide chain packing and structure formation.

Article Abstract

Many biomaterials can adapt to changes in the local biological environment (such as pH, temperature, or ionic composition) in order to regulate function or deliver a payload. Such adaptation to environmental perturbation is typically a hierarchical process that begins with a response at a local structural level and then propagates to supramolecular and macromolecular scales. Understanding fast structural dynamics that occur upon perturbation is important for rational design of functional biomaterials. However, few nanosecond time-resolved methods can probe both intra- and intermolecular scales simultaneously with a high structural resolution. Here, we utilize time-resolved X-ray scattering to probe nanosecond to microsecond structural dynamics of poly-l-glutamic acid undergoing protonation via a pH jump initiated by photoexcitation of a photoacid. Our results provide insights into the protonation-induced hierarchical changes in packing of peptide chains, formation of a helical structure, and the associated collapse of the peptide chain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533112PMC
http://dx.doi.org/10.1021/acs.jpcb.9b00072DOI Listing

Publication Analysis

Top Keywords

structural dynamics
12
fast structural
8
time-resolved x-ray
8
x-ray scattering
8
structural
5
revealing fast
4
dynamics ph-responsive
4
ph-responsive peptides
4
peptides time-resolved
4
scattering biomaterials
4

Similar Publications

Selective inhibition of histone deacetylase 8 (HDAC8) has emerged as a promising approach for treating various diseases, including cancer. However, finding key structural features for HDAC8 inhibition and developing effective and selective HDAC8 inhibitors (HDAC8s) pose significant challenges. In the past few years, the development of various scaffolds for inhibiting HDAC8 has significantly risen and the quest continues.

View Article and Find Full Text PDF

The 2023 report of the synergetic roadmap on carbon neutrality and clean air for China: Carbon reduction, pollution mitigation, greening, and growth.

Environ Sci Ecotechnol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.

The response to climate change and air pollution control demonstrates strong synergy across scientific mechanisms, targets, strategies, and governance systems. This report, based on a monitoring indicator system for coordinated governance of air pollution and climate change, employs an interdisciplinary approach combining natural and social sciences. It establishes 20 indicators across five key areas: air pollution and climate change, governance systems and practices, structural transformation and technologies, atmospheric components and emission reduction pathways, and health impacts and co-benefits.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

In this study, we explored the relationship between developmental differences in gray matter structure and grammar learning ability in 159 Dutch-speaking individuals (8 to 25 yr). The data were collected as part of a recent large-scale functional MRI study (Menks WM, Ekerdt C, Lemhöfer K, Kidd E, Fernández G, McQueen JM, Janzen G. Developmental changes in brain activation during novel grammar learning in 8-25-year-olds.

View Article and Find Full Text PDF

Nanogel imprinting improving affinity and selectivity of domain-limited ssDNA aptamer to Pb: Interaction mechanisms revealed by molecular dynamics simulation.

Int J Biol Macromol

December 2024

School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:

Aptamer conformations are susceptible to environmental conditions, which makes it difficult to achieve stable targets detection in complex environments with aptasensors. Imprinting strategy was proposed to immobilize the specific conformation of aptamers, aiming to enhance their recognition anti-interference. However, it is mechanistically unclear how the imprinted polymers affect aptamers' recognition, which limits application of the strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: