Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Controlling the propagation direction of surface plasmon polaritons (SPPs) at will using planar structures has been investigated in recent years. However the realization of a high extinction ratio of a SPP directional launcher in a densely integrated and miniaturized way, especially at the wavelength scale, still remains a challenge. To the best of our knowledge, the maximum value of the extinction ratio of a unidirectional SPP launcher based on the planar metasurface in experiment is nearly 250, which relies on the combined effect of several gap-plasmon resonator blocks with a lateral dimension much larger than the incident wavelength. Here, we design and experimentally demonstrate a polarization-controlled unidirectional SPP launcher based on a single column catenary aperture array with a lateral dimension as small as 552 nm, which is even smaller than the working wavelength. Under the illumination of circularly polarized light, our designed SPP launcher exhibits a simulated extinction ratio reaching up to 495 at a wavelength of 618 nm and 283 in the experiment. The compact size and distinctive extinction ratio may pave a new way for the directional excitation of SPPs and can be useful in compact plasmonic circuits and other photonic integrated devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr09383k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!