A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visual Quality Assessment for Super-Resolved Images: Database and Method. | LitMetric

Image super-resolution (SR) has been an active research problem which has recently received renewed interest due to the introduction of new technologies such as deep learning. However, the lack of suitable criteria to evaluate the SR performance has hindered technology development. In this paper, we fill a gap in the literature by providing the first publicly available database as well as a new image quality assessment (IQA) method specifically designed for assessing the visual quality of super-resolved images (SRIs). In constructing the quality assessment database for SRIs (QADS), we carefully selected 20 reference images and created 980 SRIs using 21 image SR methods. Mean opinion score (MOS) for these SRIs is collected through 100 individuals participating in a suitably designed psychovisual experiment. Extensive numerical and statistical analysis is performed to show that the MOS of QADS has excellent suitability and reliability. The psychovisual experiment has led to the discovery that, unlike distortions encountered in other IQA databases, artifacts of the SRIs degenerate the image structure as well as the image texture. Moreover, the structural and textural degenerations have distinctive perceptual properties. Based on these insights, we propose a novel method to assess the visual quality of SRIs by separately considering the structural and textural components of images. Observing that textural degenerations are mainly attributed to dissimilar texture or checkerboard artifacts, we propose to measure the changes of textural distributions. We also observe that structural degenerations appear as blurring and jaggies artifacts in SRIs and develop separate similarity measures for different types of structural degenerations. A new pooling mechanism is then used to fuse the different similarities together to give the final quality score for an SRI. The experiments conducted on the QADS demonstrate that our method significantly outperforms the classical as well as current state-of-the-art IQA methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2898638DOI Listing

Publication Analysis

Top Keywords

visual quality
12
quality assessment
12
super-resolved images
8
well image
8
psychovisual experiment
8
artifacts sris
8
structural textural
8
textural degenerations
8
structural degenerations
8
sris
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!