Gesture recognition using sparse multichannel surface electromyography (sEMG) is a challenging problem, and the solutions are far from optimal from the point of view of muscle-computer interface. In this paper, we address this problem from the context of multi-view deep learning. A novel multi-view convolutional neural network (CNN) framework is proposed by combining classical sEMG feature sets with a CNN-based deep learning model. The framework consists of two parts. In the first part, multi-view representations of sEMG are modeled in parallel by a multistream CNN, and a performance-based view construction strategy is proposed to choose the most discriminative views from classical feature sets for sEMG-based gesture recognition. In the second part, the learned multi-view deep features are fused through a view aggregation network composed of early and late fusion subnetworks, taking advantage of both early and late fusion of learned multi-view deep features. Evaluations on 11 sparse multichannel sEMG databases as well as five databases with both sEMG and inertial measurement unit data demonstrate that our multi-view framework outperforms single-view methods on both unimodal and multimodal sEMG data streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2019.2899222 | DOI Listing |
Mol Inform
January 2025
Faculty of Information Technology, HUTECH University, 700000, Ho Chi Minh City, Vietnam.
In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Geneis Beijing Co., Ltd, Beijing, 100102, China.
The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi 621, Taiwan.
In computer vision, accurately estimating a 3D human skeleton from a single RGB image remains a challenging task. Inspired by the advantages of multi-view approaches, we propose a method of predicting enhanced 2D skeletons (specifically, predicting the joints' relative depths) from multiple virtual viewpoints based on a single real-view image. By fusing these virtual-viewpoint skeletons, we can then estimate the final 3D human skeleton more accurately.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Background And Objective: Neurosurgical navigation is a critical element of brain surgery, and accurate segmentation of brain and scalp blood vessels is crucial for surgical planning and treatment. However, conventional methods for segmenting blood vessels based on statistical or thresholding techniques have limitations. In recent years, deep learning-based methods have emerged as a promising solution for blood vessel segmentation, but the segmentation of small blood vessels and scalp blood vessels remains challenging.
View Article and Find Full Text PDFFront Neurosci
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Objective: High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.
Approach: Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!