Application of dilational surface rheology, surface tensiometry, ellipsometry, Brewster angle, and transmission electron and atomic force microscopies allowed the estimation of the structure of the adsorption layer of a fullerenol with a large number of hydroxyl groups, C(OH) ( X = 30 ± 2). The surface properties of fullerenol solutions proved to be similar to the properties of dispersions of solid nanoparticles and differ from those of the solutions of conventional surfactants and amphiphilic macromolecules. Although the surface activity of fullerenol is not high, it forms adsorption layers of high surface elasticity up to 170 mN/m. The layer consists of small interconnected surface aggregates with the thickness corresponding to two-three layers of fullerenol molecules. The aggregates are not adsorbed from the bulk phase but formed at the interface. The adsorption kinetics is controlled by an electrostatic adsorption barrier at the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b04152DOI Listing

Publication Analysis

Top Keywords

surface properties
8
properties fullerenol
8
fullerenol solutions
8
surface
6
fullerenol
5
dynamic surface
4
solutions application
4
application dilational
4
dilational surface
4
surface rheology
4

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Objective: To evaluate the influence of in situ acid erosion on the structural and optical properties of nanoparticulate bisacrylic resin with different surface treatments, evaluating surface roughness (Ra), knoop microhardness (KHN), color change (ΔE, ΔL, ΔC, ΔH), contrast (CR) and translucency (TP).

Methods: Eighty specimens were made (n = 10 per group) and the following surface treatments were applied: U-unpolished; A-polishing with Astropol rubber tips (Ivoclar); S-Biscover LV surface sealant (Bisco) and S-Palaseal surface sealant (kulzer). For the in situ experiment, 10 volunteers wore an intraoral appliance containing eight specimens (two specimens per experimental group), with only one specimen from each experimental group being subjected to the acid process.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

1,4-Dihydroxyanthraquinone (1,4-DHAQ, a fluorophore) doped carbon nanotubes@cellulose (1,4-DHAQ-doped CNTs@CL) nanofibrous membranes have been prepared electrospinning and subsequent deacetylation in this work. They have been successfully applied for highly sensitive detection of Cu in aqueous solution. The surface area per unit mass (S/M) ratio of the nanofibrous membranes was enhanced by incorporating the CNTs into cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!