Bacteriorhodopsin (BR) and halorhodopsin (HR) are well-known light-driven ion-pumping rhodopsins. BR transfers a proton from the intracellular medium to the extracellular medium. HR takes in chloride ion from the extracellular medium. A new light-driven sodium ion-pumping rhodopsin was discovered in 2013 by Inoue, Kandori, and co-workers ( Nat. Commun . 2013 , 4 , 1678 ). The purpose of this article is to elucidate the proton, sodium ion and chloride ion transfer mechanisms and the geometrical changes of the intermediates. The absorption maxima of three rhodopsins were calculated by the SAC/SAC-CI method using the QM/MM optimized geometries. For BR, the SAC-CI results supported the previously proposed proton-transfer mechanism; (1) the photoisomerization from all-trans to 13-cis retinal (K intermediate), (2) the relaxation of the retinal structure (L intermediate), (3) the proton transfer from the Schiff base to the counterion residue (ASP85) (M intermediate), (4) the proton transfer from the ASP96 to the Schiff base (N intermediate), and (5) the thermal isomerization from 13-cis to all-trans retinal (O intermediate). The proton releases to the extracellular medium through the ASP96, the Schiff base, the ASP85, and the GLU204 or GLU194 from the intracellular medium. Furthermore, it clarified that the guanidine group rotation of ARG82 changes the excitation energies of the L and N intermediates, but the effect is small for the resting state and the K, M, and O intermediates. The theoretical calculations suggested that the ARG82 rotation occurs in the N intermediate from the comparison between the experimental absorption spectra and the theoretical excitation energies. For the KR2, the Kandori group proposed the sodium ion transfer mechanism; (1) the photoisomerization from all-trans to 13-cis retinal (K intermediate), (2) the relaxation of the retinal structure (L intermediate), (3) the proton transfer from the Schiff base to the counterion residue (ASP116) (M intermediate), (4) the sodium ion passes through the cavity formed by the rotation of the counterion residue (ASP116) (O intermediate) and (5) the proton of the ASP116 reassociates to the Schiff base. The steps (1) to (3) are the same as ones of BR. The SAC-CI results supported the proposed sodium ion transfer mechanism and suggested that the sodium ion transfer proceeds in the O intermediate as follows; (1) the sodium ion connects with the Schiff base in the cavity formed by the ASP116 rotation, (2) at the same time that the sodium ion passes through the Schiff base, the Schiff base forms the hydrogen bond to the proton of ASP116, and (3) at the same time that the sodium ion transfers to the extracellular medium, the proton reassociates with the Schiff base from the ASP116. Furthermore, our results indicated that the retinal is not all-trans but 13-cis when the sodium ion passes through the Schiff base in the O intermediate. For the HR, since the counterion residue is replaced by the THR126, the proton dose not transfer from the Schiff base. Instead, the chloride ion transfers in the opposite direction to the proton of BR and the sodium ion of KR2. The SAC-CI results supported the previously proposed chloride ion transfer mechanism; (1) the photoisomerization from all-trans to 13-cis retinal (K intermediate), (2) the relaxation of the retinal structure (L intermediate), (3) the chloride ion passes through the Schiff base from the extracellular medium side to the intracellular medium side (N intermediate) and (4) the chloride ion transfer from the Schiff base to the intracellular medium and the thermal isomerization from 13-cis to all-trans retinal (O intermediate). Furthermore, our results suggested that the Schiff base forms bonds to the hydroxide ion instead of the chloride ion in the O intermediate. The negative ion is necessary to keep the total charge around the Schiff base in the O intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.8b10203 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmacy, Qingdao University, Qingdao 266071, China. Electronic address:
Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.
View Article and Find Full Text PDFBioorg Chem
December 2024
Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:
As naturally essential biomacromolecule, HSA has become diagnostic indicators for various diseases and universal carriers for anticancer drug delivery, therefore, fluorescence detection and labeling for HSA possess significant application value in the biomedical field. In this paper, hydrazide Schiff base fluorescent probe NDQC was designed and synthesized, which self-assembled into nanoparticles in aqueous solution system and demonstrated excellent selectivity and sensitivity towards HSA. Through displacement assay and molecular docking simulation, the binding of NDQC with HSA in FA1 site was demonstrated, thereby no obvious fluorescence signal presented for homologous protein BSA due to their structural differences in binding site.
View Article and Find Full Text PDFInorg Chem
January 2025
Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan.
In their + V and + VI oxidation states, actinide elements (U, Np, and Pu) are commonly encountered in characteristic linear dioxo structures, known as actinyl ions (AnO; An = U, Np, Pu, = 1, 2). A systematic understanding of the structural and redox behavior of AnO/AnO complexes is expected to provide valuable information for controlling the behavior of An elements in natural environments and in nuclear fuel cycles while enabling the development of spintronics and new reactivities that utilize the anisotropic spin of the 5f electrons. However, systematic trends in the behavior of AnO/AnO complexes remain poorly understood.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:
The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!