A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrodynamic versus Surface Interaction Impacts of Roughness in Closing the Gap between Favorable and Unfavorable Colloid Transport Conditions. | LitMetric

Recent experiments revealed that roughness decreases the gap in colloid attachment between favorable (repulsion absent) and unfavorable (repulsion present) conditions through a combination of hydrodynamic slip and surface interactions with asperities. Hydrodynamic slip was calibrated to experimentally observed tangential colloid velocities, demonstrating that slip length was equal to maximum asperity relief, thereby providing a functional relationship between slip and roughness metrics. Incorporation of the slip length in mechanistic particle trajectory simulations yielded the observed modest decrease in attachment over rough surfaces under favorable conditions, with the observed decreased attachment being due to reduced colloid delivery rather than decreased attraction. Cumulative interactions with multiple asperities acting within the zone of colloid-surface interaction were unable to produce the observed dramatic increased attachment and decreased reversibility with increased roughness under unfavorable conditions, necessitating inclusion of nanoscale attractive heterogeneity that was inferred to have codeveloped with roughness. Simulated attachment matched experimental observations when the spatial frequency of larger heterodomains (nanoscale zones of attraction) increased disproportionately relative to smaller heterodomains as roughness increased, whereas attachment was insensitive to asperity properties, including the number of interactions per asperity and asperity height; colloid detachment simulations were highly sensitive to these parameters. These cumulative findings reveal that hydrodynamic slip moderately decreases colloid bulk delivery, nanoscale heterogeneity dramatically enhances colloid attachment, and multiple interactions among asperities decrease detachment from rough surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b06162DOI Listing

Publication Analysis

Top Keywords

hydrodynamic slip
12
colloid attachment
8
interactions asperities
8
slip length
8
rough surfaces
8
increased attachment
8
colloid
7
attachment
7
roughness
6
slip
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!