Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solid waste management has witnessed much progress in recent years with considerable efforts targeting the reduction of associated impacts and carbon emissions. Such efforts remain relatively limited in developing economies due to inefficient management practices. In this study, a life cycle assessment (LCA) approach is adopted to identify integrated systems with minimal impacts and reduced emissions in a developing context coupled with an economic valuation and sensitivity analysis to assess the effect of varying influencing parameters individually. The results showed that the highest impact arises from landfilling with minimal material recovery for recycling and composting, while incineration coupled with energy recovery contributed to the least equivalent emissions (-111% with respect to baseline scenario) at a varying cost of -70% to +93% depending on the selected technology and the value of carbon credit. Optimizing material recycling, composting and landfilling with energy recovery contributed to 98% savings in emissions (with respect to baseline scenario) and remained economically attractive irrespective of the carbon credit exchange rate of 0.5-50 US$/MTCOE. The sensitivity analysis showed that an improvement in landfill gas collection efficiency (up to 60%) can contribute to major savings in emissions (58%). The application of the LCA-based approach supports the development of integrated viable plans while quantifying advantages and disadvantages towards decision-making and policy-planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X18815951 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!