Spontaneous revertants of the cdc30 mutation in Saccharomyces cerevisiae simultaneously regained the ability to grow and divide at 36.5 degrees C on glucose-containing media along with a more thermostable phosphoglucose isomerase (PGI). An independently isolated allele of cdc30 gave a similar phenotype to that previously described including temperature-sensitivity of PGI. Isoelectric focussing allowed the separation of two isoenzymes of PGI. These results all support the idea that two genes--PGI1 and CDC30--are responsible for PGI activity in yeast. Diploid strains homozygous for the cdc30 mutation sporulated poorly in potassium acetate irrespective of whether the cells had previously been cultured at a temperature that was permissive or restrictive for cell cycle progression. This was not surprising because a strain defective in PGI would not be expected to be able to complete the gluconeogenic events of sporulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-134-9-2475 | DOI Listing |
Genes Dev
October 1996
Imperial Cancer Research Fund, Cell Cycle Laboratory, London, UK.
In a screen for new cell-cycle genes in Schizosaccharomyces pombe we have isolated cdc30, which is identical to orp1, a putative homolog of the Saccharomyces cerevisiae ORC1 gene. Analysis of the temperature-sensitive orp1-4 and the orp1(delta) mutants indicates that orp1 is required at the onset of S phase for an early step of DNA replication. Orp1p is found in the nucleus and is present at a constant level throughout the cell cycle.
View Article and Find Full Text PDFJ Gen Microbiol
April 1991
School of Pure and Applied Biology, University of Wales College of Cardiff, UK.
Isoelectric focusing was used to compare the complement of phosphoglucose isomerase isoenzymes in a wild-type strain of Saccharomyces cerevisiae and in a strain with a deletion in the PGI1 structural gene. Deletion of the PGI1 gene did not result in the absence of the high-Km isoenzyme I but the low-Km isoenzyme II was absent. Hence, the isoenzymes must be the products of two genes.
View Article and Find Full Text PDFJ Gen Microbiol
September 1988
Department of Microbiology, University College Cardiff, UK.
Spontaneous revertants of the cdc30 mutation in Saccharomyces cerevisiae simultaneously regained the ability to grow and divide at 36.5 degrees C on glucose-containing media along with a more thermostable phosphoglucose isomerase (PGI). An independently isolated allele of cdc30 gave a similar phenotype to that previously described including temperature-sensitivity of PGI.
View Article and Find Full Text PDFJ Gen Microbiol
January 1987
Department of Microbiology, University College, Cardiff, UK.
The cdc30 mutation in the yeast Saccharomyces cerevisiae causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 degrees C to the restrictive temperature of 36.5 degrees C. Cell cycle arrest at 36.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!