Boreal forests form the largest and least disturbed forest biome in the northern hemisphere. However, anthropogenic pressure from intensified forest management, eutrophication, and climate change may alter the ecosystem functions of understory vegetation and services boreal forests provide. Swedish forests span long gradients of climate, nitrogen deposition, and management intensity. This makes them ideal to study how the species composition and functions of other, more pristine, boreal forests might change under increased anthropogenic pressure. Moreover, the National Forest Inventory (NFI) has collected systematic data on Swedish forest vegetation since the mid-20th century. We use this data to quantify changes in vegetation types between two periods, 1953-1962 and 2003-2012. The results show changes in forest understory vegetation since the 1950s at scales not previously documented in the boreal biome. The spatial extent of most vegetation types changed significantly. Shade-adapted and nutrient-demanding species (those with high specific leaf area) have become more common at the expense of light-demanding and nutrient-conservative (low specific leaf area) species. The cover of ericaceous dwarf shrubs decreased dramatically. These effects were strongest where anthropogenic impacts were greatest, suggesting links to drivers such as nitrogen deposition and land-use change. These changes may impact ecosystem functions and services via effects on higher trophic levels and faster plant litter decomposition in the expanding vegetation types. This, in turn, may influence nutrient dynamics, and consequently ecosystem productivity and carbon sequestration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1874 | DOI Listing |
Tree Physiol
December 2024
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.
View Article and Find Full Text PDFDeer are the most abundant large herbivores in temperate and boreal forests across the Northern Hemisphere. They are ecosystem engineers known to alter understory vegetation and future tree species composition by selective browsing. Also, deer have strong impacts on faunistic groups, often mediated by vegetation.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Earth and Environmental Sciences, State University of New York at Potsdam, Potsdam, New York, United States of America.
Two radiocarbon-dated pollen and charcoal records from cores collected at Stump Pond and a wetland in suburban Albany County, New York, provide new insights into the environmental history of a unique inland pine barrens that is currently surrounded and threatened by urban development: the Albany Pine Bush (APB). The Stump Pond core shows that the pond formed roughly 13,000 years ago with the recession of glacial Lake Albany. From ca.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Biology Department, San Diego State University, San Diego, California, USA.
The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0-30 cm) is estimated as 3.
View Article and Find Full Text PDFNew For (Dordr)
December 2024
Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden.
Boreal forests, which account for one-third of the world's forested areas, play a crucial role in global climate regulation and provide significant ecological, economic, and cultural benefits. However, boreal ecosystems face substantial threats from climate change, leading to increased disturbances such as wildfires, insect outbreaks, and disease. In response, reforestation emerges as a vital strategy for maintaining and restoring forest cover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!