Diabetic nephropathy (DN) is a primary cause of renal failure. However, studies providing renal gene expression profiles of diabetic tubulointerstitial injury are scarce and its molecular mechanisms still await clarification. To identify vital genes involved in the diabetic tubulointerstitial injury, three microarray data sets from gene expression omnibus (GEO) were downloaded. A total of 127 differentially expressed genes (DEGs) were identified by limma package. Gene set enrichment analysis (GSEA) plots showed that sister chromatid cohesion was the most significant enriched gene set positively correlated with the DN group while retinoid X receptor binding was the most significant enriched gene set positively correlated with the control group. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included extracellular matrix organization, extracellular space, extracellular matrix structural constituent, and Staphylococcus aureus infection. Twenty hub genes from three significant modules were ascertained by Cytoscape. Correlation analysis and subgroup analysis between hub genes and clinical features of DN showed that ALB, ANXA1, APOH, C3, CCL19, COL1A2, COL3A1, COL4A1, COL6A3, CXCL6, DCN, EGF, HRG, KNG1, LUM, SERPINA3, SPARC, SRGN, and TIMP1 may involve in diabetic tubulointerstitial injury. ConnectivityMap analysis indicated the most significant three compounds are 5182598, thapsigargin and 5224221. In conclusion, this study may provide new insights into the molecular mechanisms underlying diabetic tubulointerstitial injury as well as potential targets for diagnosis and therapeutics of DN.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.28313DOI Listing

Publication Analysis

Top Keywords

diabetic tubulointerstitial
16
tubulointerstitial injury
16
hub genes
12
gene set
12
enriched gene
12
genes involved
8
diabetic nephropathy
8
gene expression
8
molecular mechanisms
8
set positively
8

Similar Publications

Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease.

Int J Mol Sci

December 2024

MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) causes progressive and irreversible damage to the kidneys. Renal biopsies are essential for diagnosing the etiology and prognosis of CKD, while accurate quantification of tubulo-interstitial injuries from whole slide images (WSIs) of renal biopsy specimens is challenging with visual inspection alone.

Methods: We develop a deep learning-based method named DLRS to quantify interstitial fibrosis and inflammatory cell infiltration as tubulo-interstitial injury scores, from WSIs of renal biopsy specimens.

View Article and Find Full Text PDF

RTN1A mediates diabetes-induced AKI-to-CKD transition.

JCI Insight

December 2024

Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Diabetic patients have increased susceptibility to acute kidney injury (AKI), and AKI could progress to chronic tubulointerstitial injury and fibrosis, referred to as AKI-to-chronic kidney disease (AKI-to-CKD) transition. However, whether diabetes directly promotes AKI-to-CKD transition is not known. We previously showed that reticulon-1A (RTN1A), a gene highly upregulated in injured renal tubular epithelial cells (RTECs), promotes AKI-to-CKD transition in nondiabetic settings.

View Article and Find Full Text PDF

Background & Objective: Diabetic patients often develop lesions called non-diabetic renal diseases (NDRD), whose prognostic and therapeutic implications vary from diabetic nephropathy (DN). Since early identification of NDRD is associated with a better prognosis, we aimed to understand its spectrum.

Methods: One hundred and thirty-four patients were included in a cross-sectional study.

View Article and Find Full Text PDF

Many genetic and environmental factors are involved in the development and progression of diabetic kidney disease (DKD), and its pathology shows various characteristics. Animal models of DKD play an important role in elucidating its pathogenesis and developing new therapies. In this study, we investigated the pathophysiological features of two DKD animal models: db/db mice (background of hyperglycemia) and KK-Ay mice (background of hyperinsulinemia).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!