The physics of open systems for the simulation of complex molecular environments in soft matter.

Soft Matter

Instituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, and Universita' La Sapienza, Rome, Italy.

Published: March 2019

Molecular dynamics (MD) has become one of the most powerful tools of investigation in soft matter. Despite such success, simulations of large molecular environments are mostly run using the approximation of closed systems without the possibility of exchange of matter. Due to the molecular complexity of soft matter systems, an optimal simulation strategy would require the application of concurrent multiscale resolution approaches such that each part of a large system can be considered as an open subsystem at a high resolution embedded in a large coarser reservoir of energy and particles. This paper discusses the current capability and the future perspectives of multiscale adaptive resolution MD methods to satisfy the conceptual principles of open systems and to perform simulations of complex molecular environments in soft matter.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm02523aDOI Listing

Publication Analysis

Top Keywords

soft matter
16
molecular environments
12
open systems
8
complex molecular
8
environments soft
8
matter molecular
8
molecular
5
matter
5
physics open
4
systems
4

Similar Publications

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Condensation and Synchronization in Aligning Chiral Active Matter.

Phys Rev Lett

December 2024

Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.

We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.

View Article and Find Full Text PDF

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and health care applications. Here, a theoretical framework is presented and proven to be universally accurate and robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers substantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized compression.

View Article and Find Full Text PDF

A hitchhiker's guide to active motion.

Eur Phys J E Soft Matter

January 2025

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.

View Article and Find Full Text PDF

Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!