A simple and efficient decarboxylative radical addition/cyclization strategy was developed, by which a wide range of benzimidazo[2,1-a]isoquinoline-6(5H)-ones were prepared in one-pot via reaction of functionalized 2-arylbenzoimidazoles and carboxylic acids in the presence of K2S2O8/AgNO3 under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc10243kDOI Listing

Publication Analysis

Top Keywords

decarboxylative radical
8
silver-catalyzed decarboxylative
4
radical cascade
4
cascade cyclization
4
cyclization benzimidazo[21-a]isoquinolin-65h-ones
4
benzimidazo[21-a]isoquinolin-65h-ones simple
4
simple efficient
4
efficient decarboxylative
4
radical addition/cyclization
4
addition/cyclization strategy
4

Similar Publications

The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.

View Article and Find Full Text PDF

The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.

View Article and Find Full Text PDF

Metal- and Light-Free Decarboxylative Giese Addition Reaction Facilitated by Hantzsch Ester.

Org Lett

January 2025

Phostdoctoral Research Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China.

We have developed a novel strategy for decarboxylative radical addition reactions that employs ground-state reduced nicotinamide adenine dinucleotide (NADH) analogues under ambient and open-air conditions, facilitating the efficient formation of Csp-Csp bonds in a variety of substrates. This protocol is distinguished by its operational simplicity, mild reaction conditions, high efficiency, and the use of cost-effective starting materials. Furthermore, experimental studies have provided valuable insights into the reaction mechanism, elucidating the light-independent pathways that promote these transformations.

View Article and Find Full Text PDF

Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances.

Chem Commun (Camb)

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.

In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!