iTRAQ Proteomic Analysis of Continuously Cropped Soybean Root Inoculated With .

Front Microbiol

Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, China.

Published: January 2019

Soybean () is susceptible to root rot when subjected to continuous cropping, and this disease can seriously diminish the crop yield. Proteomics analyses can show the difference of protein expression in different treatment samples. Herein, isobaric tag for relative and absolute quantitation (iTRAQ) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed for proteomic analysis of continuously cropped soybean inoculated with the arbuscular mycorrhizal fungus (AMF) . The AMF can reduce the incidence of root rot and increase plant height, biomass index in 1, 2, and 4 year of continuous cropping. Differential expression of proteins in soybean roots was determined following 1 year of continuous cropping. A total of 131 differentially expressed proteins (DEPs) were identified in -treated samples, of which 49 and 82 were up- and down-regulated, respectively. The DEPs were annotated with 117 gene ontology (GO) terms, with 48 involved in biological processes, 31 linked to molecular functions, and 39 associated with cell components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis mapped the DEPs to 113 mainly metabolic pathways including oxidative phosphorylation, glycolysis, and amino acid metabolism. Expression of glucan 1,3-beta-glucosidase, chalcone isomerase, calcium-dependent phospholipid binding and other defense-related proteins was up-regulated by , suggesting inoculation promotes the growth and development of soybean and increases disease resistance. The findings provide an experimental basis for further research on the molecular mechanisms of AMF in resolving problems associated with continuous soybean cropping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362899PMC
http://dx.doi.org/10.3389/fmicb.2019.00061DOI Listing

Publication Analysis

Top Keywords

continuous cropping
12
proteomic analysis
8
analysis continuously
8
continuously cropped
8
cropped soybean
8
root rot
8
year continuous
8
soybean
6
itraq proteomic
4
soybean root
4

Similar Publications

Laetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide.

View Article and Find Full Text PDF

Continuous cropping of Patchouli alters soil physiochemical properties and rhizosphere microecology revealed by metagenomic sequencing.

Front Microbiol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Continuous cropping (CC) profoundly impacts soil ecosystems, including changes in soil factors and the structure and stability of microbial communities. These factors are interrelated and together affect soil health and plant growth. In this research, metagenomic sequencing was used to explore the effects of CC on physicochemical properties, enzyme activities, microbial community composition, and functional genes of the rhizosphere soil of patchouli.

View Article and Find Full Text PDF

Differential responses of root and leaf-associated microbiota to continuous monocultures.

Environ Microbiome

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China.

Continuous monocultures alter the composition and function of root-associated microbiota, and thus compromise crop health and productivity. In comparison, little is known about how leaf-associated microbiota respond to continuous monocultures. Here, we profiled root and leaf-associated microbiota of peanut plants under monocropping and rotation conditions.

View Article and Find Full Text PDF

Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.

View Article and Find Full Text PDF

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!