Locomotion relies on the fine-tuned coordination of different muscles which are controlled by particular neural circuits. Depending on the attendant conditions, walking patterns must be modified to optimally meet the demands of the task. Assessing neuromuscular control during dynamic conditions is methodologically highly challenging and prone to artifacts. Here we aim at assessing corticospinal involvement during different locomotor tasks using non-invasive surface electromyography. Activity in tibialis anterior (TA) and gastrocnemius medialis (GM) muscles was monitored by electromyograms (EMGs) in 27 healthy volunteers (11 female) during regular walking, walking while engaged in simultaneous cognitive dual tasks, walking with partial visual restriction, and skilled, targeted locomotion. Whereas EMG intensity of the TA and GM was considerably altered while walking with partial visual restriction and during targeted locomotion, dual-task walking induced only minor changes in total EMG intensity compared to regular walking. Targeted walking resulted in enhanced EMG intensity of GM in the frequency range associated with Piper rhythm synchronies. Likewise, targeted walking induced enhanced EMG intensity of TA at the Piper rhythm frequency around heelstrike, but not during the swing phase. Our findings indicate task- and phase-dependent modulations of neuromuscular control in distal leg muscles during various locomotor conditions in healthy subjects. Enhanced EMG intensity in the Piper rhythm frequency during targeted walking points toward enforced corticospinal drive during challenging locomotor tasks. These findings indicate that comprehensive time-frequency EMG analysis is able to gauge cortical involvement during different movement programs in a non-invasive manner and might be used as complementary diagnostic tool to assess baseline integrity of the corticospinal tract and to monitor changes in corticospinal drive as induced by neurorehabilitation interventions or during disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361808PMC
http://dx.doi.org/10.3389/fneur.2019.00017DOI Listing

Publication Analysis

Top Keywords

emg intensity
20
locomotor tasks
12
targeted walking
12
enhanced emg
12
piper rhythm
12
walking
10
neuromuscular control
8
regular walking
8
walking partial
8
partial visual
8

Similar Publications

Rationale: Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease with various manifestations and high heterogeneity. Clinical characteristics, imaging, skin biopsy, and genetic testing are necessary for its diagnosis. Electromyography may also be a useful tool for diagnosing NIID.

View Article and Find Full Text PDF

Motor unit firing rate (MUFR) and pennation angle were measured concurrently in males and females from submaximal to maximal intensities. Thirty participants, (16F and 14M) performed isometric dorsiflexion contractions at 20%, 40%, 60%, 80% and 100% of maximal voluntary contraction (MVC). During each contraction, measures of MUFR were obtained via surface electromyography decomposition, and muscle fiber pennation angle and fascicle length were obtained via ultrasound.

View Article and Find Full Text PDF

Purpose: Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses.

View Article and Find Full Text PDF

Background: The dosage and intensity of physical therapy are crucial factors influencing the motor recovery of the hemiplegic lower limb in patients with subacute stroke. Biofeedback using wearable sensors may provide opportunities for patients with stroke to effectively guide self-exercises with monitoring of muscular activities in hemiplegic lower limbs. This study aims to explore the feasibility and safety of in-bed self-exercises based on electromyography sensor feedback in patients with subacute stroke.

View Article and Find Full Text PDF

The phase-dependent modulation pattern of the tibialis anterior (TA) flexion reflex was characterized during treadmill walking while transspinal stimulation was delivered at 15, 30, and 50 Hz above and below paresthesia in healthy participants. The flexion reflex was elicited following medial arch foot stimulation with a 30 ms (300 Hz) pulse train. During treadmill walking, the flexion reflex was evoked in the right leg every 3 to 5 steps, and stimuli were randomly dispersed across the step cycle that was divided into 16 equal bins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!