The growing population requires sustainable, environmentally-friendly crops. The plant growth-enhancing properties of algal extracts have suggested their use as biofertilisers. The mechanism(s) by which algal extracts affect plant growth are unknown. We examined the effects of extracts from the common green seaweed Ulva intestinalis on germination and root development in the model land plant Arabidopsis thaliana. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid-insensitive mutant, abi1, showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Elemental analysis showed that Ulva contains high levels of Aluminium ions (Al). Ethylene and cytokinin have been suggested to function in Al-mediated root growth inhibition: our data suggest that if Ulva Al levels inhibit root growth, this is via a novel mechanism. We suggest algal extracts should be used cautiously as fertilisers, as the inhibitory effects on early development may outweigh any benefits if the concentration of extract is too high.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374390PMC
http://dx.doi.org/10.1038/s41598-018-38093-2DOI Listing

Publication Analysis

Top Keywords

green seaweed
8
algal extracts
8
germination root
8
ulva extract
8
effects green
4
seaweed extract
4
extract arabidopsis
4
arabidopsis early
4
early development
4
development roles
4

Similar Publications

Biosynthesis of silver nanoparticles from macroalgae Hormophysa triquetra and investigation of its antibacterial activity and mechanism against pathogenic bacteria.

Sci Rep

January 2025

Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P. O. Box: 2713, Doha, Qatar.

In this study, brown macroalgae Hormophysta triquetra (HT) collected from the Qatari coast is used to biosynthesize silver nanoparticles (AgNPs) from its aqueous (AQ), chloroform: methanol (MCF), and ethanolic extracts (ET). The NPs are characterized using Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Gas chromatography/Mass spectrometry (GC/MS) and X-ray photoelectron spectroscopy (XPS). The NPs were evaluated for their antibacterial activities by disc-diffusion method and their minimum inhibitory concentrations (MIC) were assessed.

View Article and Find Full Text PDF

Interactions of anthropogenic microfibres with the marine macroalga, Ulvalactuca.

Mar Pollut Bull

January 2025

School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK. Electronic address:

Little information exists on the interactions between microfibres (MFs) and marine macroalgae. In this study, the translucent green seaweed, Ulva lactuca, has been exposed to ∼2 mg L suspensions of MFs prepared from dryer lint under controlled conditions, with MFs on the alga surface and remaining in seawater subsequently counted and characterised. MFs were mainly <2 mm and cellulosic, and contained various additives and chemicals used in textile treatment.

View Article and Find Full Text PDF

Green seaweeds, which make up a major population of total seaweed worldwide, possess various therapeutic properties. The aim of the study directed at isolating a (1 → 4) linked sulfated rhamno xyloglucuronan, designated as UFP-2, from the edible green seaweed Ulva fasciata Delile, and to evaluate its efficacy in modulating immune responses and inhibiting SARS-CoV-2 (Delta variant) infection. Anti-inflammatory potential of UFP-2 was demonstrated through the regulation of key cytokines involved in inflammatory responses triggered by viral infections, including interferons (IFN-α/γ), interleukin (IL-1β/12/33), and tumor necrosis factor (TNF-α).

View Article and Find Full Text PDF

The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.

View Article and Find Full Text PDF

The present study explores the microbial community associated with the industrially important red seaweed Gracilaria dura to determine the diversity and biotechnological potential through culture and metagenomics approaches. In the first part of the investigation, we isolated and characterized 75 bacterial morphotypes, with varied colony characteristics and metabolic diversity from the wild seaweed. Phylogenetic analysis identified isolates in Proteobacteria, Firmicutes, and Actinobacteria, with Bacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!