Transplantation of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC-CMs) is a promising treatment for heart failure, but residual undifferentiated hiPSCs and malignant transformed cells may lead to tumor formation. Here we describe a highly sensitive tumorigenicity assay for the detection of these cells in hiPSC-CMs. The soft agar colony formation assay and cell growth analysis were unable to detect malignantly transformed cells in hiPSC-CMs. There were no karyotypic abnormalities during hiPSCs subculture and differentiation. The hiPSC markers TRA1-60 and LIN28 showed the highest sensitivity for detecting undifferentiated hiPSCs among primary cardiomyocytes. Transplantation of hiPSC-CMs with a LIN28-positive fraction > 0.33% resulted in tumor formation in nude rats, whereas no tumors were formed when the fraction was < 0.1%. These findings suggested that combination of these in vitro and in vivo tumorigenecity assays can verify the safety of hiPSC-CMs for cell transplantation therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374479 | PMC |
http://dx.doi.org/10.1038/s41598-018-38325-5 | DOI Listing |
Physiol Rep
December 2024
Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
Cardiac alternans (C-ALT) is a phenomenon of alternating strong and weak contractions in the heart and is considered a risk factor for the development of heart failure and arrhythmias. However, no model has been reported that can induce C-ALT in vitro using human cells, and the developmental mechanism of C-ALT has not been studied using human cells. In this study, we successfully induced C-ALT in vitro using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.
Introduction: A healthy young woman, age 26 without prior cardiac complications, experienced an out-of-hospital cardiac arrest caused by ventricular fibrillation (VF), which coincided with a fever. Comprehensive diagnostics including echo, CMR, exercise testing, and genetic sequencing, did not identify any potential cause. This led to the diagnosis of idiopathic VF and installment of an implantable cardioverter defibrillator, which six months later appropriately intervened another VF episode under conditions comparable to the first event.
View Article and Find Full Text PDFSci Data
December 2024
Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Cardiac regenerative therapy has recently progressed by reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and advanced by large-scale differentiation-derived cardiomyocytes (hiPSC-CMs). However, repairing damaged cardiac tissues with hiPSC-CMs remains limited due to immune rejection, cardiac arrhythmias, and concerns over tumor formation after hiPSC-CM transplantation. Despite efforts in profiling epigenomic changes during cardiac differentiation, regulatory mechanisms underlying 5-methylcytosine (mC) deposition in RNA mC epitranscriptomic landscape during hiPSC-to-cardiomyocyte differentiation remain unclear.
View Article and Find Full Text PDFCell Calcium
December 2024
Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:
Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.
Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.
Circ Res
December 2024
Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham. (Y.W., G.W., T.N., X.G., B.G., H.Z., A.G., M.R.-G., J.M.R., L.Y., J.Z.).
Background: When human induced pluripotent stem cells (hiPSCs) that CCND2-OE (overexpressed cyclin-D2) were differentiated into cardiomyocytes (hiPSC-CMs) and administered to the infarcted hearts of immunodeficient mice, the cells proliferated after administration and repopulated >50% of the scar. Here, we knocked out human leukocyte antigen class I and class II expression in hiPSC-CMs (hiPSC-CMs) to reduce the cells' immunogenicity and then assessed the therapeutic efficacy of hiPSC-CMs for the treatment of myocardial infarction.
Methods: hiPSC-CM and wild-type hiPSC-CM (hiPSC-CM) spheroids were differentiated in shaking flasks, purified, characterized, and intramyocardially injected into pigs after ischemia/reperfusion injury; control animals were injected with basal medium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!