Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness - were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374434PMC
http://dx.doi.org/10.1038/s41598-019-38737-xDOI Listing

Publication Analysis

Top Keywords

genomic blueprints
4
blueprints sponge-prokaryote
4
sponge-prokaryote symbiosis
4
symbiosis shared
4
shared low
4
low abundant
4
abundant cultivatable
4
alphaproteobacteria
4
cultivatable alphaproteobacteria
4
alphaproteobacteria marine
4

Similar Publications

Integrating pharmacogenomics and cheminformatics with diverse disease phenotypes for cell type-guided drug discovery.

Genome Med

January 2025

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.

Background: Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner.

View Article and Find Full Text PDF

Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome.

Nat Commun

January 2025

School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.

The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Myeloid malignancies are heterogenous disorders characterized by distinct molecular drivers but share convergence of oncogenic signaling pathways and propagation by ripe pro-inflammatory niches. Here, we establish a comprehensive transcriptional atlas across the spectrum of myeloproliferative neoplasms (MPN) and secondary acute myeloid leukemia (sAML) through RNA-sequencing of 158 primary samples encompassing CD34+ hematopoietic stem/progenitor cells and CD14+ monocytes. Supported by mass cytometry (CyTOF) profiling, we reveal aberrant networks of PI3K/AKT/mTOR signalling and NFκB-mediated hyper-inflammation.

View Article and Find Full Text PDF

Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.

Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!