A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. | LitMetric

While magnetic nanoparticles offer exciting possibilities for stem cell imaging or tissue bioengineering, their long-term intracellular fate remains to be fully documented. Besides, it appears that magnetic nanoparticles can occur naturally in human cells, but their origin and potentially endogenous synthesis still need further understanding. In an effort to explore the life cycle of magnetic nanoparticles, we investigated their transformations upon internalization in mesenchymal stem cells and as a function of the cells' differentiation status (undifferentiated, or undergoing adipogenesis, osteogenesis, and chondrogenesis). Using magnetism as a fingerprint of the transformation process, we evidenced an important degradation of the nanoparticles during chondrogenesis. For the other pathways, stem cells were remarkably "remagnetized" after degradation of nanoparticles. This remagnetization phenomenon is the direct demonstration of a possible neosynthesis of magnetic nanoparticles and could lay some foundation to understand the presence of magnetic crystals in human cells. The neosynthesis was shown to take place within the endosomes and to involve the H-subunit of ferritin. Moreover, it appeared to be the key process to avoid long-term cytotoxicity (impact on differentiation) related to high doses of magnetic nanoparticles within stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410821PMC
http://dx.doi.org/10.1073/pnas.1816792116DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
24
stem cells
16
nanoparticles
8
human cells
8
degradation nanoparticles
8
cells
6
magnetic
6
stem
5
biosynthesis magnetic
4
nanoparticles nano-degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!