Ventilation and gas exchange before and after voluntary static surface breath-holds in clinically healthy bottlenose dolphins, .

J Exp Biol

Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.

Published: March 2019

We measured respiratory flow (), breathing frequency (), tidal volume (), breath duration and end-expired O content in bottlenose dolphins () before and after static surface breath-holds ranging from 34 to 292 s. There was considerable variation in the end-expired O, and following a breath-hold. The analysis suggests that the dolphins attempt to minimize recovery following a dive by altering and to rapidly replenish the O stores. For the first breath following a surface breath-hold, the end-expired O decreased with dive duration, while and increased. Throughout the recovery period, end-expired O increased while the respiratory effort (, ) decreased. We propose that the dolphins alter respiratory effort following a breath-hold according to the reduction in end-expired O levels, allowing almost complete recovery after 1.2 min.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.192211DOI Listing

Publication Analysis

Top Keywords

static surface
8
surface breath-holds
8
bottlenose dolphins
8
respiratory effort
8
end-expired
5
ventilation gas
4
gas exchange
4
exchange voluntary
4
voluntary static
4
breath-holds clinically
4

Similar Publications

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Suppressing Friction-Induced Stick-Slip Vibration and Noise of Zinc-Coated Steel through Temper Rolling.

Langmuir

January 2025

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

The stick-slip phenomenon as a prevalent friction instability poses significant challenges to industry, including frictional vibration, reduced precision, and noise generation. The interfacial interactions between asperities on the surface of materials are critical in influencing stick-slip behavior. This study focused on modifying the asperities on the surface of zinc-coated steel through temper rolling as a new approach to suppress friction-induced stick-slip vibration and noise.

View Article and Find Full Text PDF

New C-linked diarylheptanoid dimers as potential α-glucosidase inhibitors evidenced by biological, spectral and theoretical approaches.

Int J Biol Macromol

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) were detected in blood samples and in cellular deposits of oxygenator membranes during extracorporeal membrane oxygenation (ECMO) therapy and may be responsible for thrombogenesis. The aim was to evaluate the effect of the base material of gas fiber (GF, polymethylpentene) and heat exchange (HE) membranes and different antithrombogenic coatings on isolated granulocytes from healthy volunteers under static culture conditions. Contact of granulocytes with membranes from different ECMO oxygenators (with different surface coatings) and uncoated-GFs allowed detection of adherent cells and NETotic nuclear structures (normal, swollen, ruptured) using nuclear staining.

View Article and Find Full Text PDF

Quaternized Nanofiber-Based Anion-Exchange Chromatography Membrane with Periodic Diagonal Surface Structure for Efficient Protein Separation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.

Constructing a nanofibrous membrane with high flow rate surface pore structure and high-density ligand chemical structure is a promising strategy to balance the trade-off between high flow rates and high adsorption capacity for protein separation and purification. Herein, a nanofiber-based ion-exchange chromatography membrane with a periodic diagonal surface structure and high ionic strength ligands was fabricated using dispersion cross-linking, wet coating, and template printing with a three-wire diagonal woven mesh. For this membrane, EVOH nanofibers were used as skeleton, glutaraldehyde (GA) as cross-linking agent, and quaternized chitosan (QCS) as binder and functional ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!