Background: Immunoregulatory capacity of mesenchymal stem cells (MSC) is triggered by the inflammatory environment, which changes during tissue repair. Macrophages are essential in mediating the inflammatory response after injury and can adopt a range of functional phenotypes, exhibiting pro-inflammatory and anti-inflammatory activities. An accurate characterization of MSC activation by the inflammatory milieu is needed for improving the efficacy of regenerative therapies. In this work, we investigated the immunomodulatory functions of MSC primed with factors secreted from macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype. We focused on the role of TNF-α and IL-10, prototypic pro-inflammatory and anti-inflammatory cytokines, respectively, as priming factors for MSC.

Methods: Secretion of immunoregulatory mediators from human MSC primed with media conditioned by human macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype was determined. Immunomodulatory potential of primed MSC on polarized macrophages was studied using indirect co-cultures. Involvement of TNF-α and IL-10 in priming MSC and of PGE in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Collagen hydrogels were used to study MSC and macrophages interactions in a more physiological environment.

Results: Priming MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages enhanced their immunomodulatory potential through increased PGE secretion. We identified the pro-inflammatory cytokine TNF-α as a priming factor for MSC. Notably, the anti-inflammatory IL-10, mainly produced by pro-resolving macrophages, potentiated the priming effect of TNF-α. Collagen hydrogels acted as instructive microenvironments for MSC and macrophages functions and their crosstalk. Culturing macrophages on hydrogels stimulated anti-inflammatory versus pro-inflammatory cytokine secretion. Encapsulation of MSC within hydrogels increased PGE secretion and potentiated immunomodulation on macrophages, attenuating macrophage pro-inflammatory state and sustaining anti-inflammatory activation. Priming with inflammatory factors conferred to MSC loaded in hydrogels greater immunomodulatory potential, promoting anti-inflammatory activity of macrophages.

Conclusions: Factors secreted by pro-inflammatory and anti-inflammatory macrophages activated the immunomodulatory potential of MSC. This was partially attributed to the priming effect of TNF-α and IL-10. Immunoregulatory functions of primed MSC were enhanced after encapsulation in hydrogels. These findings may provide insight into novel strategies to enhance MSC immunoregulatory potency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375172PMC
http://dx.doi.org/10.1186/s13287-019-1156-6DOI Listing

Publication Analysis

Top Keywords

pro-inflammatory anti-inflammatory
24
immunomodulatory potential
16
msc
15
tnf-α il-10
12
macrophages
11
anti-inflammatory
10
pro-inflammatory
9
mesenchymal stem
8
stem cells
8
msc primed
8

Similar Publications

Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.

View Article and Find Full Text PDF

B cells recruitment promotes M2 macrophage polarization to inhibit inflammation during wound healing.

Clin Exp Immunol

January 2025

Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.

Introduction: Wound healing causes heavy economic burdens for families and society, becoming a critical issue in the global healthcare system. While the role of immune cells in the wound healing process is well-established, the involvement of B cells remains poorly understood. This study aims to elucidate the essentiality of B cells in wound repair.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) poses a major risk to human health due to an array of implications, one of which is a detrimental effect on the testicular and reproductive functions. Euphorbia heterophylla is widely recognized for its medicinal properties worldwide.

Methods And Findings: The objective of this study was to profile E.

View Article and Find Full Text PDF

Adipose-derived stem cells (ADSCs) have an important role in the modulation of burned tissue repair through the release of paracrine factors that stimulate the wound healing response. In this study, we tested the hypothesis that smoking status alters the profile of paracrine factors secreted from ADSCs isolated from damaged adipose tissue. Adipose tissue was collected from adult patients (N=8) with severe burn injuries (>20% total body surface area) at the index operation.

View Article and Find Full Text PDF

Increased pro-SFTPB in HDL promotes the pro-inflammatory transition of HDL and represents a sign of poor prognosis in ARDS patients.

J Transl Med

January 2025

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.

Background: Acute respiratory distress syndrome (ARDS) is causatively associated with excessive alveolar inflammation involving deregulated pro-inflammatory macrophage polarization. High-density lipoprotein (HDL) showed critical anti-inflammatory roles by modulating macrophage function, and its adverse transition to pro-inflammation has an important role in the pathogenesis of ARDS. However, the relationship between HDL protein constituents and functional remodeling is unknown in ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!