Physiological control of rotary blood pumps is becoming increasingly necessary for clinical use. In this study, the mean oxygen partial pressure in the upper airway was first quantitatively evaluated as a control objective for a rotary blood pump. A model-free predictive controller was designed based on this control objective. Then, the quantitative evaluation of the controller was implemented with a rotary blood pump model on a complete cardiovascular model incorporated with airway mechanics and gas exchange models. The results show that the controller maintained a mean oxygen partial pressure at a normal and constant level of 138 mmHg in the left heart failure condition and restored basic haemodynamics of blood circulation. A left ventricular contractility recovery condition was also replicated to assess the response of the controller, and a stable result was obtained. This study indicates the potential use of the oxygen partial pressure index during pulmonary gas exchange when developing a multi-objective physiological controller for rotary blood pumps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411918823035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!