Thixotropic clays have favorable properties for tissue regeneration. Hypoxia mimetic agents showed promising results in pre-clinical models for hard and soft tissue regeneration. It is unclear if clays can be used as carrier for hypoxia mimetic agent in a periodontal regenerative setting. Here, we tested the response of human fibroblasts of the periodontal soft tissue to synthetic clay hydrogels and assessed hypoxia mimetic agent release. Cells were cultured on synthetic clay hydrogels (5.00%-0.15%). We assessed viability and differentiation capacity with resazurin-based toxicity assays, MTT staining, Live-Dead staining, and alkaline phosphatase staining. To reveal the response of fibroblasts to hypoxia mimetic agent-loaded clay hydrogels, cells were exposed to clay supplemented with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl. Supernatants from hypoxia mimetic agent-loaded clay hydrogels were harvested and replaced with medium at hour 1, 3, 6, 24, 48, and 72. To reveal the hypoxia mimetic capacity of supernatants, vascular endothelial growth factor production in the fibroblasts was assessed in the culture medium. Our data show that clay did not induce relevant toxic effects in the fibroblasts which remained capable to differentiate into alkaline phosphatase-positive cells at the relevant concentrations. Fibroblasts cultured on clay hydrogel loaded with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl remained vital, however, no significant increase in vascular endothelial growth factor levels was found in the culture medium. Only dimethyloxalylglycine-loaded clay supernatants taken in the first hours stimulated vascular endothelial growth factor production in fibroblasts. In conclusion no pronounced toxic effects of synthetic clay were observed. Supplementation with dimethyloxalylglycine leads to hypoxia mimetic activity. This pilot study provides first insights into the impact of synthetic clay on periodontal tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328218821042 | DOI Listing |
Biomedicines
December 2024
President's Office (Retired), Nanyang Technological University, Singapore 639798, Singapore.
Unlabelled: Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration.
Background/objectives: Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia.
J Biochem
January 2025
Graduate School of Engineering, Kogakuin University, Tokyo, Japan.
Cytotechnology
February 2025
Cerrahpaşa Faculty of Medicine, Histology and Embryology Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
Paracrine factors secreted by mesenchymal stem/stromal cells (MSCs) have been demonstrated to have significant therapeutic potential. The secretome profiles of MSCs variate depending on culture conditions. Generally, the effects of a single preconditioning strategy on secretome profiles of MSCs were investigated.
View Article and Find Full Text PDFJ Inflamm Res
November 2024
Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China.
Purpose: Although the anti-inflammatory properties of the hypoxia-mimetic drug deferoxamine (DFO) have been reported, its potential as a treatment for periodontitis remains unknown. This study investigated the therapeutic benefits of DFO on osteoclastogenesis and inflammation in periodontitis progression.
Methods: RAW264.
Pharmaceuticals (Basel)
October 2024
Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
Background/objectives: Tumor microenvironmental hypoxia is an established hallmark of solid tumors. It significantly contributes to tumor aggressiveness and therapy resistance and has been reported to affect the balance of activating/inhibitory surface receptors' expression and activity on NK cells. In the current study, we investigated the impact of hypoxia on the surface expression of Siglec-7 and Siglec-9 (Sig-7/9) and their ligands in NK cells and tumor target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!