This study explores the spatial distribution of green stormwater infrastructure (GSI) relative to sociodemographic and landscape characteristics in Portland, OR, and Baltimore, MD, USA at census block group (CBG) and census tract scales. GSI density is clustered in Portland, while it is randomly distributed over space in Baltimore. Variables that exhibit relationships with GSI density are varied over space, as well as between cities. In Baltimore, GSI density is significantly associated with presence of green space (+), impervious surface coverage (+), and population density (-) at the CBG scale; though these relationships vary over space. At the census tract scale in Baltimore, a different combination of indicators explains GSI density, including elevation (+), population characteristics, and building characteristics. Spatial regression analysis in Portland indicates that GSI density at the CBG scale is associated with residents identifying as White (-) and well-draining hydrologic soil groups A and B (-). At both census tract and CBG scales, GSI density is associated with median income (-) and sewer pipe density (-). Hierarchical modelling of GSI density presents significant spatial dependence as well as group dependence implicit to Portland at the census tract scale. Significant results of this model retain income and sewer pipe density as explanatory variables, while introducing the relationship between GSI density and impervious surface coverage. Overall, this research offers decision-relevant information for urban resilience in multiple environments and could serve as a reminder for cities to consider who is inherently exposed to GSI benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.417 | DOI Listing |
Rev Sci Instrum
December 2024
Plasmaphysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany.
A new high energy proton radiography facility PRIOR-II (Proton Microscope for FAIR) has been designed, constructed, and successfully commissioned at the GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany) pushing the technical boundaries of charged particle radiography with normal conducting magnets to the limits. The setup is foreseen to become a new and powerful user facility for carrying out fundamental science experiments in the fields of plasma and shock wave physics, material science, and medical physics. It will help address several unsolved scientific challenges, which require high-speed and precise non-invasive diagnostic methods capable of probing matter with up to 100 g/cm2 areal density.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina. Electronic address:
In this study, we investigate the integration of the enzyme creatinine deiminase into solid-state nanopore walls through electrostatic assembly for the development of creatinine sensors. In these asymmetric single nanochannels, ionic transport is determined by the surface charge inside the channel, resulting in diode-like behavior that rectifies ionic current. The efficiency of such rectification depends on the surface charge density.
View Article and Find Full Text PDFEur J Radiol
December 2024
Friedrich-Schiller-University Jena, Jena University Hospital, Department of Diagnostic and Interventional Radiology, Jena, Germany. Electronic address:
Purpose: To compare the quality of deep learning image reconstructed (DLIR) virtual monochromatic images (VMI) and material density (MD) iodine images from dual-energy computed tomography (DECT) for the evaluation of head and neck neoplasms with CT scans from a conventional single-energy protocol.
Method: A total of 294 head and neck CT scans (98 VMIs operated at 60 keV, 102 MD iodine images, and 94 images from a 120 kVp single-energy CT (SECT) protocol) were retrospectively evaluated. VMIs and MD iodine images were generated using the Gemstone Spectral Imaging (GSI) mode using DLIR and metal artifact reduction (MAR) algorithms.
Nature
October 2024
Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs. ). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides.
View Article and Find Full Text PDFJ Clin Med
October 2024
Department of Pathomorphology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland.
modulation of gut microbiota by probiotics has been proposed as a target for intervention to reduce bone mineral density (BMD) loss in the postmenopausal period. This study aims to evaluate the effect of (L.) LPC100 and (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!