Alterations in cell-cycle regulation and cellular metabolism are associated with cancer transformation, and enzymes active in the committed cell-cycle phase may represent vulnerabilities of cancer cells. Here, we map metabolic events in the G and SGM phases by combining cell sorting with mass spectrometry-based isotope tracing, revealing hundreds of cell-cycle-associated metabolites. In particular, arginine uptake and ornithine synthesis are active during SGM in transformed but not in normal cells, with the mitochondrial arginase 2 (ARG2) enzyme as a potential mechanism. While cancer cells exclusively use ARG2, normal epithelial cells synthesize ornithine via ornithine aminotransferase (OAT). Knockdown of ARG2 markedly reduces cancer cell growth and causes GM arrest, while not inducing compensation via OAT. In human tumors, ARG2 is highly expressed in specific tumor types, including basal-like breast tumors. This study sheds light on the interplay between metabolism and cell cycle and identifies ARG2 as a potential metabolic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663478 | PMC |
http://dx.doi.org/10.1016/j.celrep.2019.01.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!