Explorative visualization techniques provide a first summary of microbiome read count datasets through dimension reduction. A plethora of dimension reduction methods exists, but many of them focus primarily on sample ordination, failing to elucidate the role of the bacterial species. Moreover, implicit but often unrealistic assumptions underlying these methods fail to account for overdispersion and differences in sequencing depth, which are two typical characteristics of sequencing data. We combine log-linear models with a dispersion estimation algorithm and flexible response function modelling into a framework for unconstrained and constrained ordination. The method is able to cope with differences in dispersion between taxa and varying sequencing depths, to yield meaningful biological patterns. Moreover, it can correct for observed technical confounders, whereas other methods are adversely affected by these artefacts. Unlike distance-based ordination methods, the assumptions underlying our method are stated explicitly and can be verified using simple diagnostics. The combination of unconstrained and constrained ordination in the same framework is unique in the field and facilitates microbiome data exploration. We illustrate the advantages of our method on simulated and real datasets, while pointing out flaws in existing methods. The algorithms for fitting and plotting are available in the R-package RCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373939PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205474PLOS

Publication Analysis

Top Keywords

unconstrained constrained
12
constrained ordination
12
framework unconstrained
8
microbiome read
8
read count
8
dimension reduction
8
assumptions underlying
8
ordination
5
methods
5
unified framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!