Insect DNA barcoding is a species identification technique used in biodiversity assessment and ecological studies. However, DNA extraction can result in the loss of up to 70% of DNA. Recent research has reported that direct PCR can overcome this issue. However, the success rates could still be improved, and tissues used for direct PCR could not be reused for further genetic studies. Here, we developed a direct PCR workflow that incorporates a 2-min sample preparation in PBS-buffer step for fast and effective universal insect species identification. The developed protocol achieved 100% success rates for amplification in six orders: Mantodea, Phasmatodea, Neuroptera, Odonata, Blattodea and Orthoptera. High and moderate success rates were obtained for five other species: Lepidoptera (97.3%), Coleoptera (93.8%), Diptera (90.5%), Hemiptera (81.8%) and Hymenoptera (75.0%). High-quality sequencing data were also obtained from these amplifiable products, allowing confidence in species identification. The method was sensitive down to 1/4th of a 1-mm fragment of leg or body and its success rates with oven-dried, ethanol-preserved, food, bat guano and museum specimens were 100%, 98.6%, 90.0%, 84.0% and 30.0%, respectively. In addition, the pre-PCR solution (PBS with insect tissues) could be used for further DNA extraction if needed. The workflow will be beneficial in the fields of insect taxonomy and ecological studies due to its low cost, simplicity and applicability to highly degraded specimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13005 | DOI Listing |
Pathogens
November 2024
Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, and .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia.
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays.
View Article and Find Full Text PDFLife (Basel)
December 2024
Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
Huntington's disease is a genetic disorder characterized by progressive neuronal cell damage in some areas of the brain; symptoms are commonly associated with chorea, rigidity and dystonia. The symptoms in Huntington's Disease are caused by a pathological increase in the number of Cytokine-Adenine-Guanine (CAG) repeats on the first exon of the Huntingtin gene, which causes a protein to have an excessive number of glutamine residues; this alteration leads to a change in the protein's conformation and function. Therefore, the purpose of this work was to design, synthesize and evaluate an antisense oligonucleotide (ASO; 95 nucleotides) HTT 90-5 directed to the Huntingtin CAG repeats in primary leukocyte culture cells from a patient with Huntington's Disease; approximately 500,000 leukocytes per well extracted from venous blood were used, to which 100 pMol of ASO were administered, and the expression of Huntingtin was subsequently evaluated at 72 h by RT-PCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!