Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genomes can be considered a combination of 16 dinucleotides. Analysing the relative abundance of different dinucleotides may reveal important features of genome evolution. In present study, we conducted extensive surveys on the relative abundances of dinucleotides in various genomic components of 28 bacterial, 20 archaean, 19 fungal, 24 plant and 29 animal species. We found that TA, GT and AC are significantly under-represented in open reading frames of all organisms and in intergenic regions and introns of most organisms. Specific dinucleotides are of greatly varied usage at different codon positions. The significantly low representations of TA, GT and AC are considered the evolutionary consequences of preventing formation of pre-mature stop codons and of reducing intron-splicing options in candidate primary mRNA sequences. These data suggest that a reduction of TA and GT occurred on both strands of the DNA sequence at an early stage of de novo gene birth. Interestingly, GT and AC are also significantly under-represented in current prokaryotic genomes, suggesting that ancient prokaryotic protein-coding genes might have contained introns. The greatly varied usages of specific dinucleotides at different codon positions are considered evolutionary accommodations to compensate the unavailability of specific codons and to avoid formation of pre-mature stop codons. This is the first report presenting data of dinucleotide relative abundance to indicate the possible existence of spliceosomal introns in ancient prokaryotic genes and to hypothesize early steps of de novo gene birth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-019-01535-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!