Micro-swimmers often have to encounter a medium that exhibits non-Newtonian behaviour. To understand the effect of complex environments on the propulsion dynamics of swimmers, here we have investigated a self-propelled sphere-dimer in a viscoelastic medium, using a coarse-grained hybrid mesoscopic simulation technique. We have shown that a viscoelastic fluid can result in the enhancement of swimming speed, as compared to the speed in a Newtonian fluid with the same viscosity. A non-linear response in the dimer velocity is seen for higher Péclet numbers in viscoelastic fluids. With help of various dynamical quantities, we have shown that the observed non-linear response of the directed velocity is associated with the micro-structural properties of the fluid. These include the alignment of the fluid elements and the density inhomogeneity around the moving dimer. The enhancement of self-propulsion velocity has been probed in detail, and the factors affecting the propulsion are identified.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm02311eDOI Listing

Publication Analysis

Top Keywords

sphere-dimer viscoelastic
8
viscoelastic fluid
8
non-linear response
8
fluid
5
enhanced self-propulsion
4
self-propulsion sphere-dimer
4
viscoelastic
4
fluid micro-swimmers
4
micro-swimmers encounter
4
encounter medium
4

Similar Publications

Micro-swimmers often have to encounter a medium that exhibits non-Newtonian behaviour. To understand the effect of complex environments on the propulsion dynamics of swimmers, here we have investigated a self-propelled sphere-dimer in a viscoelastic medium, using a coarse-grained hybrid mesoscopic simulation technique. We have shown that a viscoelastic fluid can result in the enhancement of swimming speed, as compared to the speed in a Newtonian fluid with the same viscosity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!