Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions.

Nanoscale

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyeonggi-do 16419, Republic of Korea. and SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Kyeonggi-do 16419, Republic of Korea and Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Kyeonggi-do 16419, Republic of Korea.

Published: March 2019

Creating stretchable and transparent conductive electrodes for stretchable and transparent electronics is very challenging due to difficulties in obtaining adequate optical and mechanical properties simultaneously. Here, we designed a stretchable and transparent nanofiber-networked electrode (STNNE) based on a networked structure of electrospun stretchable nanofibers made from a mixture of polyurethane (PU)/reduced graphene oxide (rGO)/silver nanoparticles (AgNPs). The STNNE showed a sheet resistance as small as 210 Ω sq at an optical transparency of ∼83%. In addition, the STNNE has up to 40% mechanical stretchability and relatively high electrical stability (i.e., a resistance change of 83% at 40% stretching). The good electrical conductance, mechanical stretchability, and electrical stability under static/dynamic stretching or after cyclic stretching are attributed to the high dispersion of AgNPs in the nanofibers, which creates more electrically conductive pathways and forms fused junctions at the intersections between nanofibers during electrospinning. As a demonstration, an STNNE with a simple selective-patterning process was employed to fabricate a stretchable capacitive touch sensor with a stretchable and transparent dielectric (PU) on a polydimethylsiloxane substrate. The signal output of the touch sensor upon touching under stretched conditions was nearly unchanged. This STNNE has great potential in stretchable and transparent electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr10170aDOI Listing

Publication Analysis

Top Keywords

stretchable transparent
24
stretchable
8
transparent nanofiber-networked
8
high dispersion
8
fused junctions
8
transparent electronics
8
mechanical stretchability
8
electrical stability
8
touch sensor
8
transparent
5

Similar Publications

A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors.

Int J Biol Macromol

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:

Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices.

Carbohydr Polym

March 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China. Electronic address:

To achieve the green and sustainable development of environment, biocompatible hydrogels with exceptional ionic conductivity and flexibility are highly desired for intelligent and wearable sensors. However, it remains a great challenge to obtain biopolymer hydrogel-based sensors with high transparency, excellent mechanical properties, and good adhesion ability simultaneously. Herein, starch/polyacrylamide double-network hydrogel is achieved to endow the multifunctionality of traditional hydrogel sensor.

View Article and Find Full Text PDF

Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!