Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session6mmlfso600tgr0d254ivbpvakrvuuu31): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Collective cell migration plays a pivotal role in development, wound healing, and metastasis, but little is known about the mechanisms and coordination of cell migration in 3D microenvironments. Here, we demonstrate a 3D wound healing assay by photothermal ablation for investigating collective cell migration in epithelial tissue structures. The nanoparticle-mediated photothermal technique creates local hyperthermia for selective cell ablation and induces collective cell migration of 3D tissue structures. By incorporating dynamic single cell gene expression analysis, live cell actin staining, and particle image velocimetry, we show that the wound healing response consists of 3D vortex motion moving toward the wound followed by the formation of multicellular actin bundles and leader cells with active actin-based protrusions. Inhibition of ROCK signaling disrupts the multicellular actin bundle and enhances the formation of leader cells at the leading edge. Furthermore, single cell gene expression analysis, pharmacological perturbation, and RNA interference reveal that Notch1-Dll4 signaling negatively regulates the formation of multicellular actin bundles and leader cells. Taken together, our study demonstrates a platform for investigating 3D collective cell migration and underscores the essential roles of ROCK and Notch1-Dll4 signaling in regulating 3D epithelial wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b06305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!