The electrochemical properties of VPO4O as a cathode for Mg batteries were studied by performing first principles calculations. Mg insertion features a plateau at about 2.8 V up to Mg0.5VPO4O and then another plateau at around 2.2 V up to MgVPO4O, with a theoretical capacity of about 154 mA h g-1 and 144 mA h g-1, respectively. MgVPO4O is found to be dynamically stable with the absence of negative frequencies in the phonon density of states. The insertion of one Mg reduced two VO6 units instead of reducing only one VO6 unit. In addition, MgVPO4O shows an energy barrier of about 0.58 eV for Mg-ion vacancy migration along the [111] direction, which is comparable to that of many other cathode materials. Our results indicated that MgVPO4O has the potential to be a promising candidate as a cathode material for Mg batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00580c | DOI Listing |
Chem Asian J
January 2025
East China University of Science and Technology, School of Materials Science and Engineering, 130# Meilong Road, Shanghai, 200237, Shanghai, CHINA.
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.
Single-Molecule Junctions (SMJs) are key platforms for the exploration of electron transport at the molecular scale. In this study, we present a method that employs different exchange-correlation density functionals for the molecule and the lead domains in an SMJ, enabling the selection of the optimal one for each part. This is accomplished using a formally exact projection-based density-functional theory (DFT-in-DFT) embedding technique combined with the non-equilibrium Green's function method to predict zero-bias conductance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!