Extracellular vesicles, news about their role in immune cells: physiology, pathology and diseases.

Clin Exp Immunol

Division of Neuroscience, Unit of Molecular and Cellular Neuroscience, San Raffaele Scientific Institute and San Raffaele University, Milan, Italy.

Published: June 2019

Two types of extracellular vesicles (EVs), exosomes and ectosomes, are generated and released by all cells, including immune cells. The two EVs appear different in many properties: size, mechanism and site of assembly, composition of their membranes and luminal cargoes, sites and processes of release. In functional terms, however, these differences are minor. Moreover, their binding to and effects on target cells appear similar, thus the two types are considered distinct only in a few cases, otherwise they are presented together as EVs. The EV physiology of the various immune cells differs as expected from their differential properties. Some properties, however, are common: EV release, taking place already at rest, is greatly increased upon cell stimulation; extracellular navigation occurs adjacent and at distance from the releasing cells; binding to and uptake by target cells are specific. EVs received from other immune or distinct cells govern many functions in target cells. Immune diseases in which EVs play multiple, often opposite (aggression and protection) effects, are numerous; inflammatory diseases; pathologies of various tissues; and brain diseases, such as multiple sclerosis. EVs also have effects on interactive immune and cancer cells. These effects are often distinct, promoting cytotoxicity or proliferation, the latter together with metastasis and angiogenesis. Diagnoses depend on the identification of EV biomarkers; therapies on various mechanisms such as (1) removal of aggression-inducing EVs; (2) EV manipulations specific for single targets, with insertion of surface peptides or luminal miRNAs; and (3) removal or re-expression of molecules from target cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514371PMC
http://dx.doi.org/10.1111/cei.13274DOI Listing

Publication Analysis

Top Keywords

target cells
16
immune cells
12
cells
11
extracellular vesicles
8
evs
7
immune
6
vesicles news
4
news role
4
role immune
4
cells physiology
4

Similar Publications

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan.

View Article and Find Full Text PDF

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.

Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.

View Article and Find Full Text PDF

Objective: This study aims to explore the role of exosome-related genes in breast cancer (BRCA) metastasis by integrating RNA-seq and single-cell RNA-seq (scRNA-seq) data from BRCA samples and to develop a reliable prognostic model.

Methods: Initially, a comprehensive analysis was conducted on exosome-related genes from the BRCA cohort in The Cancer Genome Atlas (TCGA) database. Three prognostic genes (JUP, CAPZA1 and ARVCF) were identified through univariate Cox regression and Lasso-Cox regression analyses, and a metastasis-related risk score model was established based on these genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!