Efficient micropropagation procedure was developed for Origanum vulgare, a high-value culinary herb, and the phytochemicals, phenolic content, antioxidant and antimutagenic activity of leaf and stem, derived from different growing stages were analyzed. The agar solidified Murashige and Skoog (MS) medium supplemented with a combination of 6-benzylaminopurine and α-naphthaleneacetic acid was optimized as best shoot-multiplication-medium. Shoots were rooted best on 1/2 strength MS medium supplemented with 50 µM indole-3-butyric acid (IBA). The plantlets were successfully acclimatized ex vitro in a soil, sand and farmyard manure mixture (2:1:1 v/v/v) with 100% survival rate in greenhouse. The total anthocyanin and total phenolic content were observed significantly higher in leaves of in vitro-raised plants. However, total tannin, flavonoid and antioxidant activity remained higher in leaves of mother plant maintained under ployhouse condition. All the plant extracts have shown significant antimutagenic activity except in vitro-growing plants. A total of 13 polyphenolic compounds were detected in different extracts using high performance liquid chromatography. Among these, catechin was detected maximum in in vitro-growing cultures and chlorogenic acid in leaves of mother plant. These findings will help the farmers, medicinal plant growers, and industries for mass multiplication and effective extraction of phytochemicals from O. vulgare.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-04678-xDOI Listing

Publication Analysis

Top Keywords

antimutagenic activity
12
origanum vulgare
8
phenolic content
8
medium supplemented
8
higher leaves
8
plants total
8
leaves mother
8
mother plant
8
phenolic compounds
4
compounds antioxidant
4

Similar Publications

Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.

Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves.

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex.

Food Res Int

February 2025

Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China. Electronic address:

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex were investigated, and the structure-activity relationship was further explored. Catechins including epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) could successfully covalently bind with gluten through C-N and/or C-S bonds. The physicochemical properties of covalent complex, including particle size, thermal stability, content of free amino groups, free sulfhydryl groups and disulfide bonds, were significantly affected by different catechins, and the action order was: EGCG > ECG > EGC > EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!