The contribution of the supplementary motor area (SMA) to movement initiation remains unclear. SMA exhibits premovement activity across a variety of contexts, including externally cued and self-initiated movements. Yet SMA lesions impair initiation primarily for self-initiated movements. Does SMA influence initiation across contexts or does it play a more specialized role, perhaps contributing only when initiation is less dependent on external cues? To address this question, we perturbed SMA activity via microstimulation at variable times before movement onset. Experiments used two adult male rhesus monkeys trained on a reaching task. We used three contexts that differed regarding how tightly movement initiation was linked to external cues. Movement kinematics were not altered by microstimulation. Instead, microstimulation induced a variety of changes in the timing of movement initiation, with different effects dominating for different contexts. Despite their diversity, these changes could be explained by a simple model where microstimulation has a stereotyped impact on the probability of initiation. Surprisingly, a unified model accounted for effects across all three contexts, regardless of whether initiation was determined more by external cues versus internal considerations. All effects were present for stimulation both contralateral and ipsilateral to the moving arm. Thus, the probability of initiating a pending movement is altered by perturbation of SMA activity. However, changes in initiation probability are independent of the balance of internal and external factors that establish the baseline initiation probability. The role of the supplementary motor area (SMA) in initiating movement remains unclear. Lesion experiments suggest that SMA makes a critical contribution only for self-initiated movements. Yet SMA is active before movements made under a range of contexts, suggesting a less-specialized role in movement initiation. Here, we use microstimulation to probe the role of SMA across a range of behavioral contexts that vary in the degree to which movement onset is influenced by external cues. We demonstrate that microstimulation produces a temporally stereotyped change in the probability of initiation that is independent of context. These results argue that SMA participates in the computations that lead to movement initiation and does so across a variety of contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788817PMC
http://dx.doi.org/10.1523/JNEUROSCI.2335-18.2019DOI Listing

Publication Analysis

Top Keywords

movement initiation
24
initiation
14
supplementary motor
12
motor area
12
self-initiated movements
12
movements sma
12
external cues
12
movement
11
sma
11
area sma
8

Similar Publications

Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.

View Article and Find Full Text PDF

Prompt emergence from general anesthesia is crucial after neurosurgical procedures, such as craniotomies, to facilitate timely neurological evaluation for identification of intraoperative complications. Delayed emergence can be caused by residual anesthetics, metabolic imbalances, and intracranial pathology, for which an eye examination can provide early diagnostic clues. The sunset sign (or setting sun sign), characterized by a downward deviation of the eyes, can be an early indicator of raised intracranial pressure (ICP) or midbrain compression, as is commonly observed in states of hydrocephalus or periaqueductal or tectal plate dysfunction.

View Article and Find Full Text PDF

Background: The combination of esketamine and propofol has become a common choice for total intravenous anesthesia in hysteroscopic procedures. However, the optimal effective dose has not yet been determined. The aim of this study was to determine the median effective dose (ED) and 95% effective dose (ED) of esketamine compounded with propofol for painless hysteroscopy.

View Article and Find Full Text PDF

Alzheimer's is an advanced nervous disorder related to aging. The present study aimed to determine the effect of eight-week aerobic training, along with the consumption of Linalool, Cineole, and β-Bourbonene, on the prevention and improvement of Alzheimer's disease. Mice were randomly assigned to 8 groups: control group, mice induced with Alzheimer's disease treated with β-amyloid (Alzheimer group), Alzheimer's mice treated with bioactive compounds of herbal medicine (Linalool with a concentration of 25 mg/kg, Cineole with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 10 μg/ml) by gavage for 8 weeks (Alzheimer+Biocompounds group), Alzheimer's mice treated with aerobic exercise with a moderate intensity treadmill for 8 weeks (Alzheimer's+Training group), Alzheimer's mice treated with bioactive compounds of herbal medicine and aerobic exercise for 8 weeks (Alzheimer+Biocompounds+Training group), healthy mice initially treated with bioactive compounds of herbal medication (Linalool with a concentration of 25 mg/kg, Cineol with a concentration of 100 mg/kg, and β-Bourbonene with a concentration of 0.

View Article and Find Full Text PDF

Traumatic brachial plexus lesions (TBPL) can lead to permanent impairment of hand function despite timely brachial plexus surgical treatment. In selected cases with no recovery of hand function, the affected forearm can be amputated and replaced by a bionic hand to regain prehensile function. This cross-sectional study aimed to assess (sub)cortical motor activity and functional connectivity changes after TBPL and bionic reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!