The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella.

Trends Microbiol

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. Electronic address:

Published: June 2019

The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2019.01.004DOI Listing

Publication Analysis

Top Keywords

phenotypic heterogeneity
12
heterogeneity salmonella
8
role host
4
host driving
4
driving phenotypic
4
salmonella complex
4
infection
4
complex infection
4
infection environment
4
environment hosts
4

Similar Publications

Multivariate patterns among multimodal neuroimaging and clinical, cognitive, and daily functioning characteristics in bipolar disorder.

Neuropsychopharmacology

January 2025

Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.

Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.

View Article and Find Full Text PDF

Network-based transfer of pan-cancer immunotherapy responses to guide breast cancer prognosis.

NPJ Syst Biol Appl

January 2025

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.

Breast cancer prognosis is complicated by tumor heterogeneity. Traditional methods focus on cancer-specific gene signatures, but cross-cancer strategies that provide deeper insights into tumor homogeneity are rarely used. Immunotherapy, particularly immune checkpoint inhibitors, results from variable responses across cancers, offering valuable prognostic insights.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents.

View Article and Find Full Text PDF

Purpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!