Evidence for new nuclear and mitochondrial genome organizations among high-frequency somatic embryogenesis-derived plants of allotetraploid Coffea arabica L. (Rubiaceae).

Plant Cell Rep

Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi 110 007, India e-mail: Fax: +91-11-7256541, , , , , , IN.

Published: October 2000

 The most important commercial species of coffee, Coffea arabica, which produces 73% of the world's coffee crop and almost all of the coffee in Latin America, is the only tetraploid (allotetraploid, 2n=4x=44) species known in the genus. High-frequency somatic embryogenesis, plant regeneration and plant recovery were achieved from leaf explants of a mature, elite plant of C. arabica cv. Cauvery (S-4347) using a two-step culture method. To assess the genetic integrity of the nuclear, mitochondrial and chloroplast genomes among the hardened regenerants, we employed multiple DNA markers (RFLP, RAPD, ISSR) for sampling various regions of the genome. Although the nuclear and mitochondrial genomes of the mother plant and five ramets derived from the mother ortet were similar in organization, this was not so in the somatic embryo-derived plants where both nuclear and mitochondrial genomes changed in different, characteristic ways and produced novel genome organizations. A total of 480 genetic loci, based on the data obtained from a total of 16 nuclear, mitochondrial and chloroplast gene probes, in combination with nine restriction enzyme digests, 38 RAPD and 17 SSR primers, were scored in 27 somatic embryo-derived plants and the single control. Among these, 44 loci were observed to be polymorphic. A relatively low level of polymorphism (4.36%) was found in the nuclear genome, while polymorphism in the mitochondrial genome (41%) was much higher. No polymorphism was detected in the chloroplast genome. The polymorphism in the mitochondrial genome was found in only 4 plants. Such selective polymorphism was not true for the nuclear genome. Thus, this in-depth and comprehensive study demonstrates, for the first time, the presence of subtle genetic variability and novel genome organizations in the commercially well-established somatic embryogenesis-derived plants of this important coffee species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002990000228DOI Listing

Publication Analysis

Top Keywords

nuclear mitochondrial
20
mitochondrial genome
12
genome organizations
12
genome
9
high-frequency somatic
8
somatic embryogenesis-derived
8
embryogenesis-derived plants
8
coffea arabica
8
mitochondrial chloroplast
8
mitochondrial genomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!