The specificity and sensitivity of polymerase chain reaction (PCR) primers developed for 'Candidatus Liberibacter solanacearum' and 'Candidatus Liberibacter psyllaurous' were evaluated in conventional and real-time PCR assays. All PCR primers were specific for 'Ca. L. psyllaurous' and 'Ca. L. solanacearum' insomuch as they did not detect other prokaryotic plant pathogens that affect potato except for the putative pathogens associated with psyllid-yellows and haywire. Conventional PCR assays were capable of detecting 0.19 to 1.56 ng of total DNA per reaction, and real-time PCR was found capable of detecting 1.56 to 6.25 ng of total DNA per reaction, depending on the specific PCR primer set used. 'Ca. Liberibacter' species associated with zebra complex disease (ZC) was confirmed in plants affected by this disease throughout Texas from 2005 to 2008, in seed tubers produced in Wyoming in 2007, and in Colorado, Kansas, Nebraska, and Mexico in 2008. A multiplex PCR assay using 'Ca. L. solanacearum'-specific primers and primers specific for the β-tubulin DNA regions from potato was developed, providing possible utility of the multiplex assay for 'Ca. Liberibacter' detection in different solanaceous plant species. Preliminary studies suggest silverleaf nightshade (Solanum elaeagnifolium), wolfberry (Lycium barbarum), black nightshade (S. ptychanthum), and jalapeno pepper (Capsicum annuum) as additional solanaceous hosts for the ZC-associated bacterium. The 'Ca. Liberibacter' species detected in all samples divided into two clusters sharing similarity of 99.8% in their partial 16S rRNA gene sequences and 99.3% in their partial intergenic spacer region (ISR)-23S rRNA gene sequences. Genetic variation in the 16S rDNA region consistently matched that of the ISR-23S rDNA region. In this partial 16S-ISR-23S rDNA region, there was a total of eight single nucleotide polymorphisms among 'Ca. L. psyllaurous' and 'Ca. L. solanacearum' "strains" investigated in this study. 'Ca. L. solanacearum' and 'Ca. L. psyllaurous' were shown to be very closely related bacteria, if not the same, by successful amplification using a combination of forward primer of 'Ca. L. solanacearum' and reverse primer of 'Ca. L. psyllaurous' in ZC-affected potato samples. This finding clarifies the current taxonomic status of 'Ca. L. solanacearum' and 'Ca. L. psyllaurous'. The detection of 'Ca. L. solanacearum' from haywire-symptomatic potato samples demonstrates that this bacterium might also be associated with this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-93-11-1102DOI Listing

Publication Analysis

Top Keywords

'ca solanacearum'
24
'ca psyllaurous'
20
'ca
15
liberibacter' species
12
'ca liberibacter'
12
rdna region
12
species associated
8
associated zebra
8
zebra complex
8
complex disease
8

Similar Publications

Synthetic peptides bioactive against phytopathogens have lower impact on some beneficial bacteria: An assessment of peptides biosafety in agriculture.

J Environ Manage

January 2025

iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal. Electronic address:

The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.

View Article and Find Full Text PDF
Article Synopsis
  • Psyllids, specifically Bactericera maculipennis, are herbivores that typically feed on specific host plants, primarily bindweeds, but recent studies suggest they may have expanded their diet to include Solanum umbelliferum.
  • Research showed that B. maculipennis develops faster on S. umbelliferum compared to its traditional host, Convolvulus arvensis, and individuals were found directly on S. umbelliferum plants.
  • Furthermore, many of the collected psyllids were infected with a plant pathogen, indicating that the interaction between B. maculipennis and S. umbelliferum could facilitate the exchange of different pathogen haplotypes, impacting plant health
View Article and Find Full Text PDF

Novel weapon-aided plant protection in the underground battlefield.

Plant Signal Behav

December 2024

Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea.

and , the causative agents of bacterial wilt, ranks as the second most devastating phytopathogens, affecting over 310 plant species and causing substantial economic losses worldwide. and infect plants through the underground root system, where it interacts with both the host and the surrounding microbiota and multiply in the xylem where bacteria cell and its polysaccharide product block the water transportation from root to aboveground. Currently, effective control methods are limited, as resistance genes are unavailable and antibiotics prove ineffective.

View Article and Find Full Text PDF

Most species complex strains cause bacterial wilts in tropical or subtropical zones, but the group known as race 3 biovar 2 (R3bv2) is cool virulent and causes potato brown rot at lower temperatures. R3bv2 has invaded potato-growing regions around the world but is not established in the United States. Phylogenetically, R3bv2 corresponds to a subset of the phylotype IIB clade, but little is known about the distribution of the cool virulence phenotype within phylotype IIB.

View Article and Find Full Text PDF

Citrus Huanglongbing (HLB) is caused by the phloem-limited α-proteobacterium ' Liberibacter spp.', among which ' L. africanus' (CLaf) has posed a significant threat to citrus production in Africa for nearly a century.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!