The transcription factor forkhead box O 3A (FOXO3A) is a tumor suppressor that promotes cell cycle arrest and apoptosis. Piperlongumine (PL), a plant alkaloid, is known to selectively kill tumor cells while sparing normal cells. However, the mechanism of PL-induced cancer cell death is not fully understood. We report here that an association of FOXO3A with the pro-apoptotic protein BIM (also known as BCL2-like 11, BCL2L11) has a direct and specific function in PL-induced cancer cell death. Using HeLa cells stably expressing a FOXO3A-GFP fusion protein and several other cancer cell lines, we found that PL treatment induces FOXO3A dephosphorylation and nuclear translocation and promotes its binding to the BIM gene promoter, resulting in the up-regulation of BIM in the cancer cell lines. Accordingly, PL inhibited cell viability and caused intrinsic apoptosis in a FOXO3A-dependent manner. Of note, siRNA-mediated FOXO3A knockdown rescued the cells from PL-induced cell death. In vivo, the PL treatment markedly inhibited xenograft tumor growth, and this inhibition was accompanied by the activation of the FOXO3A-BIM axis. Moreover, PL promoted FOXO3A dephosphorylation by inhibiting phosphorylation and activation of Akt, a kinase that phosphorylates FOXO3A. In summary, our findings indicate that PL activates the FOXO3A-BIM apoptotic axis by promoting dephosphorylation and nuclear translocation of FOXO3A via Akt signaling inhibition. These findings uncover a critical mechanism underlying the effects of PL on cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2019.02.012 | DOI Listing |
Tissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Annu Rev Anal Chem (Palo Alto Calif)
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut, USA;
Protein glycosylation, the covalent attachment of carbohydrate, or glycan, structures onto the protein backbone, is one of the most complex and heterogeneous post-translational modifications (PTMs). Extracellular protein glycosylation, in particular N- and mucin-type O-glycosylation, plays pivotal roles in a number of biophysical and biochemical processes, such as protein folding and stability, cell adhesion, signaling, and protection. As such, aberrant glycosylation is implicated in a variety of diseases, including cancer.
View Article and Find Full Text PDFBlood
January 2025
Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
Prizloncabtagene autoleucel (prizlon-cel), a novel bispecific chimeric antigen receptor (CAR) T-cell, targets and eliminates CD19/CD20 positive tumor cells. This phase 1, open-label study investigated the safety and efficacy of prizlon-cel in patients with relapsed/refractory B-cell non-Hodgkin Lymphoma (r/r B-NHL). Patients with CD19 and/or CD20-positive r/r B-NHL received a 3-day lymphodepletion (cyclophosphamide: 300 mg/m2/d; fludarabine: 30 mg/m2/d) followed by an intravenous dose of prizlon-cel.
View Article and Find Full Text PDFBlood Adv
January 2025
Harvard Medical School, United States.
Efficacy and durability remain central shortcomings of T-cell based therapies in multiple myeloma (MM). Here, we employ blood-based transcriptional T-cell profiling to define impaired T-cell fitness as putative biomarker associated with sensitivity to PD1 inhibition in CAR-T refractory MM patients.
View Article and Find Full Text PDFBlood Adv
January 2025
The University of Sydney, Sydney, Australia.
T-cell receptor (TCR) therapies are a promising modality for the treatment of cancers, with significant efforts being directed towards acute myeloid leukaemia (AML), a particularly challenging disease. Chimeric antigen receptor (CAR) T-cells targeting single surface antigens have shown remarkable efficacy for B-cell lymphoblastic leukaemia, lymphomas and multiple myeloma. However, AML presents formidable obstacles to the effectiveness of CAR T-cells due to the widespread expression of heterogenous leukaemia immunophenotypes and surface antigen targets additionally present on normal myeloid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!