Thermoelectric Performance of 2D Tellurium with Accumulation Contacts.

Nano Lett

School of Electrical and Computer Engineering , Purdue University, West Lafayette , Indiana 47907 , United States.

Published: March 2019

Tellurium (Te) is an intrinsically p-type-doped narrow-band gap semiconductor with an excellent electrical conductivity and low thermal conductivity. Bulk trigonal Te has been theoretically predicted and experimentally demonstrated to be an outstanding thermoelectric material with a high value of thermoelectric figure-of-merit ZT. In view of the recent progress in developing the synthesis route of 2D tellurium thin films as well as the growing trend of exploiting nanostructures as thermoelectric devices, here for the first time, we report the excellent thermoelectric performance of tellurium nanofilms, with a room-temperature power factor of 31.7 μW/cm K and ZT value of 0.63. To further enhance the efficiency of harvesting thermoelectric power in nanofilm devices, thermoelectrical current mapping was performed with a laser as a heating source, and we found that high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to Te, which allows thermoelectrically generated carriers to be collected more efficiently. High-performance thermoelectric Te devices have broad applications as energy harvesting devices or nanoscale Peltier coolers in microsystems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b05144DOI Listing

Publication Analysis

Top Keywords

thermoelectric performance
8
performance tellurium
8
thermoelectric devices
8
thermoelectric
7
tellurium
4
tellurium accumulation
4
accumulation contacts
4
contacts tellurium
4
tellurium intrinsically
4
intrinsically p-type-doped
4

Similar Publications

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

Quadruple-band synglisis enables high thermoelectric efficiency in earth-abundant tin sulfide crystals.

Science

January 2025

Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.

Thermoelectrics have been limited by the scarcity of their constituent elements, especially telluride. The earth-abundant, wide-bandgap ( ≈ 46 ) tin sulfide (SnS) has shown promising performance in its crystal form. We improved the thermoelectric efficiency in SnS crystals by promoting the convergence of energy and momentum of four valance bands, termed quadruple-band synglisis.

View Article and Find Full Text PDF

Impact of Boron Nitride on the Thermoelectric Properties and Service Stability of CuSe.

ACS Appl Mater Interfaces

January 2025

Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.

Improving the thermoelectric performance and service stability is essential for the effective use of cuprous selenide (CuSe). In this study, hexagonal boron nitride (h-BN) was incorporated into nano-CuSe, with the goal of enhancing thermoelectric performance and service stability. It was found that CuSe-0.

View Article and Find Full Text PDF

This study investigates a comprehensive enhancement strategy for photovoltaic (PV) panel efficiency, focusing on increasing electrical output through the integration of parabolic reflectors, advanced cooling mechanisms, and thermoelectric generation. Parabolic reflectors are implemented in the system to maximize solar irradiance on the PV panel's surface, while a specialized cooling system is introduced to regulate temperature distribution across the silicon layer. This cooling system consists of a finned duct filled with paraffin (RT35HC) and enhanced with SWCNT nanoparticles, which improve the thermal properties of the paraffin, facilitating more effective heat dissipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!