Environmental enteric dysfunction and child stunting.

Nutr Rev

People in Need, Prague, Czech Republic.

Published: April 2019

In 2017, an estimated 1 in every 4 (23%) children aged < 5 years were stunted worldwide. With slow progress in stunting reduction in many regions and the realization that a large proportion of stunting is not due to insufficient diet or diarrhea alone, it remains that other factors must explain continued growth faltering. Environmental enteric dysfunction (EED), a subclinical state of intestinal inflammation, can occur in infants across the developing world and is proposed as an immediate causal factor connecting poor sanitation and stunting. A result of chronic pathogen exposure, EED presents multiple causal pathways, and as such the scope and sensitivity of traditional water, sanitation, and hygiene (WASH) interventions have possibly been unsubstantial. Although the definite pathogenesis of EED and the mechanism by which stunting occurs are yet to be defined, this paper reviews the existing literature surrounding the proposed pathology and transmission of EED in infants and considerations for nutrition and WASH interventions to improve linear growth worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394759PMC
http://dx.doi.org/10.1093/nutrit/nuy068DOI Listing

Publication Analysis

Top Keywords

environmental enteric
4
enteric dysfunction
4
dysfunction child
4
child stunting
4
stunting 2017
4
2017 estimated
4
estimated 23%
4
23% children
4
children aged
4
environmental
1

Similar Publications

Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle.

View Article and Find Full Text PDF

Recent advances in our understanding of methanogenesis have led to the development of antimethanogenic feed additives (AMFA) that can reduce enteric methane (CH) emissions to varying extents, via direct targeting of methanogens, alternative electron acceptors, or altering the rumen environment. Here we examine current and new approaches used for the accounting (i.e.

View Article and Find Full Text PDF

This article describes the regulatory and evidence requirements necessary for the authorization of antimethanogenic feed additives (AMFA) aimed at mitigating enteric methane (CH) emissions from ruminants. It outlines the legislation and legal procedures in Australia, Canada, the European Union, New Zealand, South Korea, the United Kingdom, and the United States as illustrative examples, offering insights for applicants seeking authorization. Additionals objectives are to highlight consequential similarities and differences in regulations and evidence requirements and offer recommendations for scientists and applicants.

View Article and Find Full Text PDF

Over the past decade, there has been considerable attention on mitigating enteric methane (CH) emissions from ruminants through the utilization of antimethanogenic feed additives (AMFA). Administered in small quantities, these additives demonstrate potential for substantial reductions of methanogenesis. Mathematical models play a crucial role in comprehending and predicting the quantitative impact of AMFA on enteric CH emissions across diverse diets and production systems.

View Article and Find Full Text PDF

There is a need for rigorous and scientifically-based testing standards for existing and new enteric methane mitigation technologies, including antimethanogenic feed additives (AMFA). The current review provides guidelines for conducting and analyzing data from experiments with ruminants intended to test the antimethanogenic and production effects of feed additives. Recommendations include study design and statistical analysis of the data, dietary effects, associative effect of AMFA with other mitigation strategies, appropriate methods for measuring methane emissions, production and physiological responses to AMFA, and their effects on animal health and product quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!