A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations. | LitMetric

Slow-wave sleep (SWS) is important for overall health since it affects many physiological processes including cardio-metabolic function. Sleep and autonomic nervous system (ANS) activity are closely coupled at anatomical and physiological levels. Sleep-related changes in autonomic function are likely the main pathway through which SWS affects many systems within the body. There are characteristic changes in ANS activity across sleep stages. Notably, in non-rapid eye-movement sleep, the progression into SWS is characterized by increased parasympathetic activity, an important measure of cardiovascular health. Experimental manipulations that enhance slow-wave activity (SWA, 0.5-4 Hz) can improve sleep-mediated memory and immune function. However, effects of SWA enhancement on autonomic regulation have not been investigated. Here, we employed an adaptive algorithm to deliver 50 ms sounds phase-locked to slow-waves, with regular pauses in stimulation (~5 s ON/~5 s OFF), in healthy young adults. We sought to determine whether acoustic enhancement of SWA altered parasympathetic activity during SWS assessed with heart rate variability (HRV), and evening-to-morning changes in HRV, plasma cortisol, and blood pressure. Stimulation, compared with a sham condition, increased SWA during ON versus OFF intervals. This ON/OFF SWA enhancement was associated with a reduction in evening-to-morning change of cortisol levels and indices of sympathetic activity. Furthermore, the enhancement of SWA in ON intervals during sleep cycles 2-3 was accompanied by an increase in parasympathetic activity (high-frequency, HRV). Together these findings suggest that acoustic enhancement of SWA has a positive effect on autonomic function in sleep. Approaches to strengthen brain-heart interaction during sleep could have important implications for cardiovascular health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729207PMC
http://dx.doi.org/10.1093/sleep/zsz036DOI Listing

Publication Analysis

Top Keywords

acoustic enhancement
12
parasympathetic activity
12
enhancement swa
12
function sleep
8
ans activity
8
autonomic function
8
cardiovascular health
8
swa enhancement
8
sleep
7
activity
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!