Aims: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo.

Methods And Results: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans.

Conclusion: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545501PMC
http://dx.doi.org/10.1093/europace/euz007DOI Listing

Publication Analysis

Top Keywords

apd alternans
16
human heart
12
intact heart
12
csqn ryr
12
vivo human
8
novel approach
8
approach combining
8
combining intact
8
heart cellular
8
alternans-susceptible alternans-resistant
8

Similar Publications

Dual calcium-voltage optical mapping of regional voltage and calcium signals in intact murine -R2474S hearts.

J Mol Cell Cardiol Plus

December 2024

Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.

Unlabelled: Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca release, but their underlying mechanism have not been well explored in intact hearts.

Methods: We performed in vivo and ex vivo studies including high throughput mapping of Ca transients (CaT) and transmembrane voltage (V) in murine wild-type (WT) and heterozygous -R2474S/+ hearts, before and during isoprenaline (ISO) challenge.

Results: ISO-challenged -R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca transients compared to WT.

View Article and Find Full Text PDF
Article Synopsis
  • - Dexmedetomidine (DEX) is known for its sedative and anti-anxiety properties, and it shows promise in preventing and treating arrhythmias during surgery, although its exact mechanisms are still not fully understood.
  • - In experiments with mice, DEX was found to reduce the occurrence of ventricular arrhythmias induced by a stressor (isoproterenol or ISO) by stabilizing key cardiac electrical properties like action potential duration and calcium transient duration.
  • - DEX pretreatment improved cardiac conduction and decreased variability in calcium signaling, indicating that it helps maintain calcium homeostasis and could be beneficial in preventing stress-induced heart issues.
View Article and Find Full Text PDF

Brain-to-heart cholinergic synapse-calcium signaling mediates ischemic stroke-induced atrial fibrillation.

Theranostics

October 2024

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.

Stroke-related cardiovascular diseases have attracted considerable attention, with atrial fibrillation (AF) being among the most frequent complications. Despite increasing clinical evidence, experimental models of stroke-induced AF are still lacking, hindering mechanistic discoveries and the development of adequate therapeutics targeting this stroke-heart syndrome (SHS). This study aims to create a rat model of ischemic stroke-induced AF (ISIAF) and to explore the efficacy and mechanism of Wenxin Keli (WK), an antiarrhythmic Chinese medicine.

View Article and Find Full Text PDF

Introduction: Eleclazine is a highly selective late sodium current inhibitor, possibly effective in reducing ventricular fibrillation (VF) in heart failure (HF) with ischemia-reperfusion (IR) injury. The electrophysiological effects of eleclazine at therapeutic hypothermia (TH) are unknown. We investigated the effects of eleclazine in suppressing VF in failing rabbit hearts with IR injury undergoing TH.

View Article and Find Full Text PDF

Empagliflozin rescues pro-arrhythmic and Ca homeostatic effects of transverse aortic constriction in intact murine hearts.

Sci Rep

July 2024

Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China.

We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na/Ca exchanger expression, confirming previous cardiomyocyte-level reports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!