Background And Aims: Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved.

Methods: A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp).

Key Results: The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks.

Conclusions: Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145532PMC
http://dx.doi.org/10.1093/aob/mcy240DOI Listing

Publication Analysis

Top Keywords

amf colonization
24
genetic analysis
8
tomato root
8
colonization
8
arbuscular mycorrhizal
8
mycorrhizal fungi
8
root amf
8
amf
7
tomato
5
analysis tomato
4

Similar Publications

Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv.

View Article and Find Full Text PDF

Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover.

Environ Res

December 2024

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China. Electronic address:

Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.

View Article and Find Full Text PDF

ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline-alkali tolerance in maize.

J Genet Genomics

December 2024

Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.

View Article and Find Full Text PDF

Enhancing soil quality in soybean cultivation: Mycorrhizal technology combined with intercropping under high cadmium stress.

Ecotoxicol Environ Saf

December 2024

Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, Heilongjiang Province 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, Heilongjiang Province 150080, China. Electronic address:

Cadmium (Cd) contamination presents a serious challenges for sustainable agriculture. This study evaluated the combined impact of arbuscular mycorrhizal fungi (AMF) inoculation and intercropping with Solanum nigrum on soil microbial diversity, enzyme activity, and environmental factors in soybean cultivation under high Cd stress. The combined treatment effectively reduced bioavailable Cd in soil, with the acid-soluble Cd fraction at 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!