Identification of molecular biomarkers for ovarian cancer using computational approaches.

Carcinogenesis

Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.

Published: July 2019

Ovarian cancer is one of the major causes of mortality among women. This is partly because of highly asymptomatic nature, lack of reliable screening techniques and non-availability of effective biomarkers of ovarian cancer. The recent availability of high-throughput data and consequently the development of network medicine approach may play a key role in deciphering the underlying global mechanism involved in a complex disease. This novel approach in medicine will pave the way in translating the new molecular insights into an effective drug therapy applying better diagnostic, prognostic and predictive tests for a complex disease. In this study, we performed reconstruction of gene co-expression networks with a query-based method in healthy and different stages of ovarian cancer to identify new potential biomarkers from the reported biomarker genes. We proposed 17 genes as new potential biomarkers for ovarian cancer that can effectively classify a disease sample from a healthy sample. Most of the predicted genes are found to be differentially expressed between healthy and diseased states. Moreover, the survival analysis showed that these genes have a significantly higher effect on the overall survival rate of the patient than the established biomarkers. The comparative analyses of the co-expression networks across healthy and different stages of ovarian cancer have provided valuable insights into the dynamic nature of ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgz025DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
28
biomarkers ovarian
12
complex disease
8
co-expression networks
8
healthy stages
8
stages ovarian
8
potential biomarkers
8
ovarian
7
cancer
7
biomarkers
5

Similar Publications

Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions.

View Article and Find Full Text PDF

Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics.

View Article and Find Full Text PDF

Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival.

View Article and Find Full Text PDF

The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!