Direct Imaging of the Induced-Fit Effect in Molecular Self-Assembly.

Small

CIC nanoGUNE and Ikerbaske, Basque Foundation for Science, Tolosa Hiribidea 76, 20018, Donostia San Sebastian, Spain.

Published: March 2019

Molecular recognition is a crucial driving force for molecular self-assembly. In many cases molecules arrange in the lowest energy configuration following a lock-and-key principle. When molecular flexibility comes into play, the induced-fit effect may govern the self-assembly. Here, the self-assembly of dicyanovinyl-hexathiophene (DCV6T) molecules, a prototype specie for highly efficient organic solar cells, on Au(111) by using low-temperature scanning tunneling microscopy and atomic force microscopy is investigated. DCV6T molecules assemble on the surface forming either islands or chains. In the islands the molecules are straight-the lowest energy configuration in gas phase-and expose the dicyano moieties to form hydrogen bonds with neighbor molecules. In contrast, the structure of DCV6T molecules in the chain assemblies deviates significantly from their gas-phase analogues. The seemingly energetically unfavorable bent geometry is enforced by hydrogen-bonding intermolecular interactions. Density functional theory calculations of molecular dimers quantitatively demonstrate that the deformation of individual molecules optimizes the intermolecular bonding structure. The intermolecular bonding energy thus drives the chain structure formation, which is an expression of the induced-fit effect.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201804713DOI Listing

Publication Analysis

Top Keywords

dcv6t molecules
12
molecular self-assembly
8
lowest energy
8
energy configuration
8
intermolecular bonding
8
molecules
7
molecular
5
direct imaging
4
imaging induced-fit
4
induced-fit molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!