Regulatory T cells (Tregs) have unique immunosuppressive properties and are essential to ensure effective immunoregulation. In animal models, Tregs have been shown to prevent autoimmune disorders and establish transplantation tolerance. Therefore, the prospect of harnessing Tregs, either by increasing their frequency or by conferring allospecificity, has prompted a growing interest in the development of immunotherapies. Here, employing a well-established skin transplant model with a single major histocompatibility complex mismatch, we compared the therapeutic efficacy of adoptively transfer Treg with or without donor specificity and the administration of IL-2 to promote in vivo expansion of Treg. We showed that IL-2 treatment preferentially enhances the proliferation of the allospecific Tregs adoptively transferred in an antigen-dependent manner. In addition, donor-specific Tregs significantly increased the expression of regulatory-related marker, such as CTLA4 and inducible costimulator (ICOS), in the skin allograft and draining lymph nodes compared to endogenous and polyclonal transferred Tregs. Importantly, by combining IL-2 with donor-specific Tregs, but not with polyclonal Tregs, a synergistic effect in prolonging skin allograft survival was observed. Altogether, our data suggest that this combination therapy could provide the appropriate conditions to enhance the immunoregulation of alloimmune responses in clinical transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618286 | PMC |
http://dx.doi.org/10.1111/ajt.15306 | DOI Listing |
Med
December 2024
Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK. Electronic address:
Background: Adoptive transfer of autologous regulatory T cells (Tregs) is a promising therapeutic strategy aimed at enabling immunosuppression minimization following kidney transplantation. In our phase 1 clinical trial of Treg therapy in living donor renal transplantation, the ONE Study (ClinicalTrials.gov: NCT02129881), we observed focal lymphocytic infiltrates in protocol kidney transplant biopsies that are not regularly seen in biopsies of patients receiving standard immunosuppression.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China.
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility.
View Article and Find Full Text PDFSuccessful allograft specific tolerance induction would eliminate the need for daily immunosuppression and improve post-transplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific Chimeric Antigen Receptors (CAR-Tregs) is a promising strategy, but as monotherapy, cannot prolong the survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57Bl/6 recipients, we show that HLA-A2-specific (A2) CAR Tregs was able to synergize with low dose of anti-CD154 to enhance graft survival.
View Article and Find Full Text PDFJ Cardiothorac Surg
June 2024
Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
Background: We previously demonstrated that the hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor (statins) play an important role in the regulation of alloimmune responses. However, little is known regarding the effects of statin on allograft protection or donor-specific antibodies (DSA). In this study, we investigated the graft-protective and immunomodulatory effects of rosuvastatin in a model of fully major histocompatibility complex-mismatched murine cardiac allograft transplantation.
View Article and Find Full Text PDFHeliyon
April 2024
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!